Myeloid zinc finger 1 (MZF1) is a transcription factor that plays an important role in blood cell development. Previous reports indicate MZF1 is an essential factor whose abnormal expression results in cancer. However, the molecular mechanisms by which MZF1 functions in development and contributes to cancer progression remain unknown.
View Article and Find Full Text PDFHere, we report the solution structure of ZNF593, a protein identified in a functional study as a negative modulator of the DNA-binding activity of the Oct-2 transcription factor. ZNF593 contains a classic C(2)H(2) zinc finger domain flanked by about 40 disordered residues on each terminus. Although the protein contains a high degree of intrinsic disorder, the structure of the zinc finger domain was resolved by NMR spectroscopy without a need for N- or C-terminal truncations.
View Article and Find Full Text PDFWe have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli.
View Article and Find Full Text PDFThe SCAN domain mediates interactions between members of a subfamily of zinc-finger transcription factors and is found in more than 60 C2H2 zinc finger genes in the human genome, including the tumor suppressor gene myeloid zinc finger 1 (MZF1). Glutathione-S-transferase pull-down assays showed that the MZF1 SCAN domain self-associates, and a Kd value of 600 nM was measured by intrinsic tryptophan fluorescence polarization. The MZF1 structure determined by NMR spectroscopy revealed a domain-swapped dimer.
View Article and Find Full Text PDFBax is a proapoptotic protein that plays a key role in the induction of apoptosis. Ku70 has activities to repair DNA damage in the nucleus and to suppress apoptosis by inhibiting Bax in the cytosol. We previously designed peptides based on the amino acid sequence of Bax-binding domain of human Ku70, and showed that these peptides bind Bax and inhibit cell death in human cell lines.
View Article and Find Full Text PDFCardiolipin (CL) is an acidic phospholipid present almost exclusively in membranes harboring respiratory chain complexes. We have previously shown that, in Saccharomyces cerevisiae, CL provides stability to respiratory chain supercomplexes and CL synthase enzyme activity is reduced in several respiratory complex assembly mutants. In the current study, we investigated the interdependence of the mitochondrial respiratory chain and CL biosynthesis.
View Article and Find Full Text PDFBax is a pro-apoptotic member of Bcl-2 family proteins and is central to mitochondria-dependent apoptosis. Bax resides in the cytosol as a quiescent protein and translocates into mitochondria after apoptotic stimuli. Ku70 is a 70K subunit of the Ku complex, which has an important role in DNA double-strand break (DSB) repair in the nucleus.
View Article and Find Full Text PDFBax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor.
View Article and Find Full Text PDF