Precise control of substrate binding and release is essential for molecular chaperones to exert their protective function in times of stress. The mechanisms used are diverse and have been difficult to unravel. Escherichia coli heat-shock protein 31 (Hsp31) is a recent addition to the known complement of eubacterial chaperones.
View Article and Find Full Text PDFHeat shock proteins and proteases play a crucial role in cell survival under conditions of environmental stress. The heat shock protein Hsp31, produced by gene hchA at elevated temperatures in Escherichia coli, is a homodimeric protein consisting of a large A domain and a smaller P domain connected by a linker. Two catalytic triads are present per dimer, with the Cys and His contributed by the A domain and an Asp by the P domain.
View Article and Find Full Text PDFBased on co-crystal structures of human topoisomerase I with bound DNA, Lys(532) makes a minor groove contact with the strongly preferred thymidine residue at the site of covalent attachment (-1 position). Replacement of Lys(532) with either arginine or alanine has essentially no effect on the sequence preference of the enzyme, indicating that this interaction is not required for the preference for a T at the -1 position. Although both the cleavage and religation activities of the K532R mutant enzyme are reduced, cleavage is reduced to a greater extent than religation.
View Article and Find Full Text PDFHeat shock proteins (Hsps) play essential protective roles under stress conditions by preventing the formation of protein aggregates and degrading misfolded proteins. EcHsp31, the yedU (hchA) gene product, is a representative member of a family of chaperones that alleviates protein misfolding by interacting with early unfolding intermediates. The 1.
View Article and Find Full Text PDF