Publications by authors named "Paule M Charland"

Monte Carlo simulation is deemed to be the leading algorithm for accurate dose calculation with electron beams. Patient anatomy (contours and tissue densities) as well as irradiation geometry is accounted for. The accuracy of the Monitor Unit (MU) determination is one essential aspect of a treatment planning system.

View Article and Find Full Text PDF

The convolution/superposition algorithm for computing dose from photon beams in radiation therapy planning requires knowledge of the energy spectrum. The algorithm can compute the dose for a polyenergetic beam as the weighted sum of the individual dose contributions from monoenergetic beams. In this study we exploit interface effects apparent in the dose distributions to discriminate among spectra of high energy photon beams.

View Article and Find Full Text PDF

Validation experiments have been conducted using 6 and 15 MV photons in inhomogeneous (water/lung/water) media to benchmark the accuracy of the DPM Monte Carlo code for photon beam dose calculations. Small field sizes (down to 2 x 2 cm2) and low-density media were chosen for this investigation because the intent was to test the DPM code under conditions where lateral electronic disequilibrium effects are emphasized. The treatment head components of a Varian 21EX linear accelerator, including the jaws (defining field sizes of 2 x 2, 3 x 3 and 10 x 10 cm2), were simulated using the BEAMnrc code.

View Article and Find Full Text PDF

In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water-lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25x25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over-responded for larger fields and depths (5% for 25x25 cm2 at depth of 15 cm compared to a 10x10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC-10 measurements for the smaller field sizes.

View Article and Find Full Text PDF

We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy).

View Article and Find Full Text PDF