Linear scaling relationships (SRs), which relate binding energies of adsorbates across a space of catalyst surfaces, have been extensively explored for metal and oxide surfaces, but little is known about their properties at interfaces between metal nanoparticles and oxide supports, which are ubiquitous in heterogeneous catalysis. Using periodic DFT calculations, scaling principles are extended to bifunctional Au/oxide interfaces. Adopting a Au nanorod on doped MgO (100) as a model, SRs for species participating in water gas shift, methanol synthesis, and oxidation reactions are reported.
View Article and Find Full Text PDFThe strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" FeO substrates by in situ microscopy. During in situ vacuum annealing of Au-FeO dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-FeO on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-FeO, as the surface reduction of nano-FeO proceeds.
View Article and Find Full Text PDFIt has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations.
View Article and Find Full Text PDF