Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.
View Article and Find Full Text PDFSialic acids at the cell surface of dendritic cells (DCs) play an important immunomodulatory role, and their manipulation enhances DC maturation, leading to heightened T cell activation. Particularly, at the molecular level, the increased stability of surface MHC-I molecules in monocyte-derived DCs (MoDCs) underpins an improved DC: T cell interaction. In this study, we focused on the impact of sialic acid remodelling by treatment with Clostridium perfringens sialidase on MoDCs' phenotypic and functional characteristics.
View Article and Find Full Text PDFBackground: Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases with heterogeneous presentations, leading to substantial diagnostic challenges, which are poorly understood. Therefore, this study aims to elucidate this diagnostic journey by examining families' and professionals' experiences.
Results And Discussion: A questionnaire was designed for CDG families and professionals, garnering 160 and 35 responses, respectively.
Dendritic cells (DCs) are crucial for initiating immune responses against tumours by presenting antigens to T cells. Glycosylation, particularly sialylation, plays a significant role in regulating cell functions, by modulating protein folding and signalling. This review aimed to provide a comprehensive overview of how sialic acids influence key aspects of DC biology, including maturation, migration, antigen presentation, and T cell interactions.
View Article and Find Full Text PDFBackground: Patient and public co-creation and involvement in health initiatives have been witnessing great expansion in recent years. From healthcare to research settings, collaborative approaches are becoming increasingly prevalent and diverse, especially in the field of rare diseases which faces complex challenges. Conference development and implementation, however, have been primarily guided by passive, information-sharing models.
View Article and Find Full Text PDFGlycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood.
View Article and Find Full Text PDFThe catalytic properties of cytochrome (C) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria.
View Article and Find Full Text PDFThe mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal.
View Article and Find Full Text PDFSialic acids are negatively charged monosaccharides typically found at the termini of cell surface glycans. Due to their hydrophilicity and biophysical characteristics, they are involved in numerous biological processes, such as modulation of the immune response, recognition of self and non-self antigens, carbohydrate-protein interactions, etc. The cellular content of sialic acid is regulated by sialidase, which catalyzes the removal of sialic acid residues.
View Article and Find Full Text PDFOrphanet J Rare Dis
October 2023
Congenital disorders of glycosylation (CDG) are a complex and heterogeneous family of rare metabolic diseases. With a clinical history that dates back over 40 years, it was the recent multi-omics advances that mainly contributed to the fast-paced and encouraging developments in the field. However, much remains to be understood, with targeted therapies' discovery and approval being the most urgent unmet need.
View Article and Find Full Text PDFComputational approaches in immune-oncology therapies focus on using data-driven methods to identify potential immune targets and develop novel drug candidates. In particular, the search for PD-1/PD-L1 immune checkpoint inhibitors (ICIs) has enlivened the field, leveraging the use of cheminformatics and bioinformatics tools to analyze large datasets of molecules, gene expression and protein-protein interactions. Up to now, there is still an unmet clinical need for improved ICIs and reliable predictive biomarkers.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) encompasses multiple entities and is generally highly aggressive and metastatic. We aimed to determine the clinical and biological relevance of Sialyl-Lewis X and A (sLe)-a fucosylated glycan involved in metastasis-in TNBC. Here, we studied tissues from 50 TNBC patients, transcripts from a TNBC dataset from The Cancer Genome Atlas (TCGA) database, and a primary breast cancer cell line.
View Article and Find Full Text PDFAt least 50% of chronic disease patients don't follow their care plans, leading to lower health outcomes and higher medical costs. Providing Patient Education Materials (PEMs) to individuals living with a disease can help to overcome these problems. PEMs are especially beneficial for people suffering from multisystemic and underrecognized diseases, such as rare diseases.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2022
Background: Clinical management guidelines (CMGs) are decision support tools for patient care used by professionals, patients, and family caregivers. Since clinical experts develop numerous CMGs, their technical language hinders comprehension and access by nonmedical stakeholders. Additionally, the views of affected individuals and their families are often not incorporated into treatment guidelines.
View Article and Find Full Text PDFBackground: Congenital disorders of glycosylation (CDG) are a large family of rare genetic diseases for which therapies are virtually nonexistent. However, CDG therapeutic research has been expanding, thanks to the continuous efforts of the CDG medical/scientific and patient communities. Hence, CDG drug development is a popular research topic.
View Article and Find Full Text PDFAim: Laccases and peroxidases have attracted great interest for industrial and environmental applications. These enzymes have a broad substrate range and a robust oxidizing ability. Moreover, using mediators or co-oxidants makes it possible to increase their catalytic activity and extend their substrate scope to more resistant chemical structures.
View Article and Find Full Text PDFCongenital Disorders of Glycosylation (CDG) are a large family of rare genetic diseases for which effective therapies are almost nonexistent. To better understand the reasons behind this, to analyze ongoing therapy research and development (R&D) for CDG, and to provide future guidance, a community-led mixed methods approach was organized during the 4th World Conference on CDG for Families and Professionals. In the quantitative phase, electronic surveys pointed to the prioritization of six therapeutic R&D tools, namely biobanks, registries, biomarkers, disease models, natural history studies, and clinical trials.
View Article and Find Full Text PDFExposure to pollution is a worldwide societal challenge participating in the etiology and progression of different diseases. However, the scarce information hinders our understanding of the actual level of human exposure and its specific effects. Inadequate and excessive immune responses underlie diverse chronic diseases.
View Article and Find Full Text PDFBackground: Congenital Disorders of Glycosylation (CDG) are a complex family of rare metabolic diseases. Robust clinical data collection faces many hurdles, preventing full CDG biological and clinical comprehension. Web-based platforms offer privileged opportunities for biomedical data gathering, and participant recruitment, particularly in rare diseases.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most detected cancer and the second foremost cause of cancer deaths in the world. Intervention targeting p53 provides potential therapeutic strategies, but thus far no p53-based therapy has been successfully translated into clinical cancer treatment. Here we developed a Quantitative Structure-Activity Relationships (QSAR) classification models using empirical molecular descriptors and fingerprints to predict the activity against the p53 protein, using the potency value with the active or inactive label, were developed.
View Article and Find Full Text PDFMammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer.
View Article and Find Full Text PDF