Publications by authors named "Paula Vanessa Guerra"

Flavanol-related structures such as epicatechin and catechins have been associated with potential antioxidant activity in food and are known to interfere with the Maillard reaction through scavenging of reactive dicarbonyl compounds. High-resolution ESI-TOF mass spectrometry and an isotope labeling technique were used to assess the reactivity of glycine with (+)-catechin heated under oxidative conditions at 120 °C for 70 min. Evidence based on accurate mass analysis of the products obtained and the isotope incorporation pattern of [(13)C-1]glycine, [(13)C-2]glycine, and [(15)N]glycine experiments indicated that (+)-catechin formed various adducts with glycine; two of them incorporated a single amino acid, and three adducts incorporated two amino acid moieties.

View Article and Find Full Text PDF

The chemical interaction of 2,3-butanedione with amino acids through Strecker reaction has been studied extensively. However, the formation of previously reported 4,5-dimethyl-1,2-benzoquinone from 2,3-butanedione/amino acid model systems has not been investigated in detail. In this study such model systems containing 2,3-butanedione were investigated under pyrolytic conditions using glycine, sodium glycinate and glycine hydrochloride as amino acids able to modulate acid/base catalytic activity of the reaction medium.

View Article and Find Full Text PDF

The 1,2-dicarbonyl compounds are well-known for their ability to undergo a one-to-one interaction with amino acids and generate aroma-active pyrazines through the Strecker reaction. An earlier publication reported the generation of tetrahydropyrazine moiety from the double addition of amino acids to 1,2-dicarbonyl compounds. To evaluate the potential of this intermediate to undergo oxidation and form pyrazines, a model system composed of glycine and 2,3-butanedione was evaluated under pyrolytic conditions at 250 °C, as well as under pressurized high-temperature conditions at 120 °C.

View Article and Find Full Text PDF

4,5-Dimethyl-3-hydroxy-2(5H)-furanone (sotolone), a naturally occurring flavor impact compound, can be isolated from various sources, especially fenugreek seeds. It can also be thermally produced from intermediates generated from the Maillard reaction such as pyruvic and ketoglutaric acids, glyoxal, and 2,3-butanedione. A naturally occurring precursor of sotolone, 3-amino-4,5-dimethyl-2(5H)-furanone, was thermally generated for the first time from pyruvic acid and glycine or from glyoxylic acid and alanine model systems.

View Article and Find Full Text PDF

Recently, azomethine ylides have been implicated as reactive intermediates in the Maillard reaction. They are known to undergo 1,3-cycloaddition reactions with dipolarophiles to form pyrroles, and, more importantly, they can undergo dimerization reaction leading to the formation of a piperazine moiety. Although the reactivity of azomethine ylides toward dipolarophiles in Maillard model systems has been studied, their role as precursors of pyrazines remains unexplored.

View Article and Find Full Text PDF