Publications by authors named "Paula Tataru"

Cable bacteria are centimeter-long filamentous bacteria that conduct electrons via internal wires, thus coupling sulfide oxidation in deeper, anoxic sediment with oxygen reduction in surface sediment. This activity induces geochemical changes in the sediment, and other bacterial groups appear to benefit from the electrical connection to oxygen. Here, we report that diverse bacteria swim in a tight flock around the anoxic part of oxygen-respiring cable bacteria and disperse immediately when the connection to oxygen is disrupted (by cutting the cable bacteria with a laser).

View Article and Find Full Text PDF

The possible evolutionary trajectories a population can follow is determined by the fitness effects of new mutations. Their relative frequencies are best specified through a distribution of fitness effects (DFE) that spans deleterious, neutral, and beneficial mutations. As such, the DFE is key to several aspects of the evolution of a population, and particularly the rate of adaptive molecular evolution (α).

View Article and Find Full Text PDF
Article Synopsis
  • * Results show that the shape of the deleterious DFE is remarkably consistent across great apes, with effective population size being a significant factor influencing negative selection strength.
  • * Interestingly, smaller populations like bonobos and western chimpanzees exhibit stronger negative selection than expected, suggesting they may be better at eliminating harmful mutations.
View Article and Find Full Text PDF

Summary: Distribution of fitness effects (DFE) of mutations can be inferred from site frequency spectrum (SFS) data. There is mounting interest to determine whether distinct genomic regions and/or species share a common DFE, or whether evidence exists for differences among them. polyDFEv2.

View Article and Find Full Text PDF

Background: Motif analysis methods have long been central for studying biological function of nucleotide sequences. Functional genomics experiments extend their potential. They typically generate sequence lists ranked by an experimentally acquired functional property such as gene expression or protein binding affinity.

View Article and Find Full Text PDF

Electron transport within living cells is essential for energy conservation in all respiring and photosynthetic organisms. While a few bacteria transport electrons over micrometer distances to their surroundings, filaments of cable bacteria are hypothesized to conduct electric currents over centimeter distances. We used resonance Raman microscopy to analyze cytochrome redox states in living cable bacteria.

View Article and Find Full Text PDF

The distribution of fitness effects (DFE) encompasses the fraction of deleterious, neutral, and beneficial mutations. It conditions the evolutionary trajectory of populations, as well as the rate of adaptive molecular evolution (). Inferring DFE and from patterns of polymorphism, as given through the site frequency spectrum (SFS) and divergence data, has been a longstanding goal of evolutionary genetics.

View Article and Find Full Text PDF

The Wright–Fisher model provides an elegant mathematical framework for understanding allele frequency data. In particular, the model can be used to infer the demographic history of species and identify loci under selection. A crucial quantity for inference under the Wright–Fisher model is the distribution of allele frequencies (DAF).

View Article and Find Full Text PDF

Effective population size (Ne) is a central parameter in population and conservation genetics. It measures the magnitude of genetic drift, rates of accumulation of inbreeding in a population, and it conditions the efficacy of selection. It is often assumed that a single Ne can account for the evolution of genomes.

View Article and Find Full Text PDF

The large amount and high quality of genomic data available today enable, in principle, accurate inference of evolutionary histories of observed populations. The Wright-Fisher model is one of the most widely used models for this purpose. It describes the stochastic behavior in time of allele frequencies and the influence of evolutionary pressures, such as mutation and selection.

View Article and Find Full Text PDF

Unlabelled: We present a tool, diCal-IBD, for detecting identity-by-descent (IBD) tracts between pairs of genomic sequences. Our method builds on a recent demographic inference method based on the coalescent with recombination, and is able to incorporate demographic information as a prior. Simulation study shows that diCal-IBD has significantly higher recall and precision than that of existing single-nucleotide polymorphism-based IBD detection methods, while retaining reasonable accuracy for IBD tracts as small as 0.

View Article and Find Full Text PDF

Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods, however, ignore biophysical factors, such as the kinetics of RNA folding; no current implementation considers both evolutionary information and folding kinetics, thus losing information that, when considered, might lead to better predictions.

Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding in a simplified way, in combination with a molecular evolution model.

View Article and Find Full Text PDF

Hidden Markov Models (HMMs) are widely used probabilistic models, particularly for annotating sequential data with an underlying hidden structure. Patterns in the annotation are often more relevant to study than the hidden structure itself. A typical HMM analysis consists of annotating the observed data using a decoding algorithm and analyzing the annotation to study patterns of interest.

View Article and Find Full Text PDF

Background: Stochastic Context-Free Grammars (SCFGs) were applied successfully to RNA secondary structure prediction in the early 90s, and used in combination with comparative methods in the late 90s. The set of SCFGs potentially useful for RNA secondary structure prediction is very large, but a few intuitively designed grammars have remained dominant. In this paper we investigate two automatic search techniques for effective grammars - exhaustive search for very compact grammars and an evolutionary algorithm to find larger grammars.

View Article and Find Full Text PDF

Background: Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present.

View Article and Find Full Text PDF