Electrocatalytic reactions are sensitive to the catalyst surface structure. Therefore, finding methods to determine active surface sites with different geometry is essential to address the structure-electrocatalytic performance relationships. In this work, we propose a simple methodology to tune and quantify the surface structure on copper catalysts.
View Article and Find Full Text PDFControlled electrodeposition and surface nanostructuring are very promising approaches to tailor the structure of the electrocatalyst surface, with the aim to enhance their efficiency for sustainable energy conversion reactions. In this highlight, we first summarise different strategies to modify the structure of the electrode surface at the atomic and sub-monolayer level for applications in electrocatalysis. We discuss aspects such as structure sensitivity and electronic and geometric effects in electrocatalysis.
View Article and Find Full Text PDFThe hydrogen evolution reaction (HER) constitutes one of the most important reactions in electrochemistry because of the value of hydrogen as a vector for energy storage and transport. Therefore, understanding the mechanism of this reaction in relation to its pH dependence is of crucial importance. While the HER on Pt(111) works efficiently in acid media, in alkaline media, the reaction is impeded and considerably larger applied overpotentials are necessary.
View Article and Find Full Text PDF