High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born-Oppenheimer regime.
View Article and Find Full Text PDFWe present a detailed experimental and theoretical study of elastic and rotationally inelastic diffraction of D(2) from NiAl(110) in the energy range 85-150 meV. The experiments were performed using a high-resolution, fixed angle geometry apparatus. Quantum and classical dynamical calculations were performed by using a six-dimensional potential energy surface constructed upon interpolation of a set of DFT (density functional theory) data.
View Article and Find Full Text PDF