Background: High resolution genome-wide copy number analysis, routinely used in clinical diagnosis for several years, retrieves new and extremely rare copy number variations (CNVs) that provide novel candidate genes contributing to disease etiology. The aim of this work was to identify novel genetic causes of neurodevelopmental disease, inferred from CNVs detected by array comparative hybridization (aCGH), in a cohort of 325 Portuguese patients with intellectual disability (ID).
Results: We have detected CNVs in 30.
Microdeletions at 1q43-q44 have been described as resulting in a clinically recognizable phenotype of intellectual disability (ID), facial dysmorphisms and microcephaly (MIC). In contrast, the reciprocal microduplications of 1q43-q44 region have been less frequently reported and patients showed a variable phenotype, including macrocephaly. Reports of a large number of patients with copy number variations involving this region highlighted the gene as a likely key player in head size anomalies.
View Article and Find Full Text PDFCopy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by aggressiveness and disinhibition.
View Article and Find Full Text PDFNon-invasive prenatal testing is increasingly available worldwide and stakeholder viewpoints are essential to guide implementation. Here we compare the preferences of women and health professionals from nine different countries towards attributes of non-invasive and invasive prenatal tests for Down syndrome. A discrete choice experiment was used to obtain participants' stated preference for prenatal tests that varied according to four attributes: accuracy, time of test, risk of miscarriage, and type of information.
View Article and Find Full Text PDFCat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported.
View Article and Find Full Text PDFDespite the success of imatinib mesylate (IM) in the treatment of chronic myeloid leukemia (CML), approximately 30% of patients are resistant to therapy, mostly due to unknown causes. To profile the expression signatures of drug transporters throughout IM therapy and correlate them with resistance, we quantified mRNA expression levels of the SLC22A12, ABCB1, ABCC1, ABCG2 and MVP genes in consecutive samples from peripheral blood or bone marrow of CML patients who were either responsive or resistant to IM. Additionally we identified and quantified BCR-ABL1 transcript variants and analyzed 1236T>C ABCB1 and 480G>C SLC22A1 polymorphisms.
View Article and Find Full Text PDFResistance to imatinib in patients with chronic myeloid leukemia can lead to advanced disease and blast crisis. Conventional chemotherapy with DNA damaging agents is then used, alone or in combination with other tyrosine kinase inhibitors (TKIs). Our aim was to assess whether imatinib resistant K562 cells were also resistant to DNA damaging agents.
View Article and Find Full Text PDFWe advocate a new paradigm for genetic diagnosis based on using customized array panels, each of which groups multiple genes and mutations associated with clinical profiles that are common to particular syndromic diseases. This parallel approach, based on a single-test multigene multiplexing strategy, compared with traditional sequential testing by gene-by-gene genetic analysis, drastically reduces the time and cost of diagnosis while maintaining accuracy and reliability. Faster diagnosis enables early decision-making to facilitate better patient management and outcomes at reduced costs to the healthcare system.
View Article and Find Full Text PDF