Publications by authors named "Paula R Oblessuc"

Candidate resistance genes encoding malectin-like and LRR domains mapped to halo blight resistance loci throughout the common bean genome are co-expressed to fight a range of Pph races. Common bean (Phaseolus vulgaris L.) is an important crop both as a source of protein and other nutrients for human nutrition and as a nitrogen fixer that benefits sustainable agriculture.

View Article and Find Full Text PDF

Jasmonic acid (JA) signaling controls several processes related to plant growth, development, and defense, which are modulated by the transcription regulator and receptor JASMONATE-ZIM DOMAIN (JAZ) proteins. We recently discovered that a member of the JAZ family, JAZ4, has a prominent function in canonical JA signaling as well as other mechanisms. Here, we discovered the existence of two naturally occurring splice variants (SVs) of JAZ4 in planta, JAZ4.

View Article and Find Full Text PDF

The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens.

View Article and Find Full Text PDF

is an enterobacterium associated with numerous foodborne illnesses worldwide. Leafy greens have been a common vehicle for disease outbreaks caused by . This human pathogen can be introduced into crop fields and potentially contaminate fresh produce.

View Article and Find Full Text PDF

Background: Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. However, the mechanisms underlying the interaction of these human pathogens with plants remain elusive. In this study, we have explored plant resistance mechanisms against these enterobacteria and the plant pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive.

View Article and Find Full Text PDF

Receptor-like kinases are membrane proteins that can be shared by diverse signalling pathways. Among them, the Arabidopsis thaliana FERONIA (FER) plays a role in the balance between distinct signals to control growth and defence. We have found that COK-4, a putative kinase encoded in the common bean anthracnose resistance locus Co-4, which is transcriptionally regulated during the immune response, is highly similar to the kinase domain of FER.

View Article and Find Full Text PDF

A decade has passed since the discovery of stomatal defense, and the field has expanded considerably with significant understanding of the basic mechanisms underlying the process.

View Article and Find Full Text PDF

Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis.

View Article and Find Full Text PDF

The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean.

View Article and Find Full Text PDF

Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.

View Article and Find Full Text PDF

The common bean locus Co - 4, traditionally referred to as an anthracnose-resistant gene, contains a cluster of predicted receptor-like kinases (COK-4 and CrRLK1-like), and at least two of these kinases are co-regulated with the plant's basal immunity. Genetic resistance to anthracnose, caused by the fungus Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is conferred by major loci throughout the Phaseolus vulgaris genome, named Co.

View Article and Find Full Text PDF

Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.

View Article and Find Full Text PDF

Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions.

View Article and Find Full Text PDF

Background: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding.

View Article and Find Full Text PDF