Publications by authors named "Paula Proszek"

We profiled a large heterogenous cohort of matched diagnostic-relapse tumour tissue and paired plasma-derived cell free DNA (cfDNA) from patients with relapsed and progressive solid tumours of childhood. Tissue and cfDNA sequencing results were concordant, with a wider spectrum of mutant alleles and higher degree of intra-tumour heterogeneity captured by the latter, if sufficient circulating tumour-derived DNA (ctDNA) was present. Serial tumour sequencing identified putative drivers of relapse, with alterations in epigenetic drivers being a common feature.

View Article and Find Full Text PDF

Purpose: we tested whether ctDNA changes may be used to assess early response and clinical outcome in metastatic colorectal cancer (mCRC) patients undergoing front-line systemic anti-cancer therapy (SACT).

Experimental Design: 862 plasma samples were collected 4-weekly from baseline (BL) until disease progression in mCRC patients receiving front line SACT. ctDNA normalization was defined as ≥99% clearance after 1 month of therapy (Mo1) in the 3 variants with the highest allele frequency in BL ctDNA.

View Article and Find Full Text PDF

As the use of liquid biopsies are increasing across multiple indications in cancer medicine, the detection of incidental findings on circulating tumour DNA is of increasing importance. We report the finding of leukaemia detected in a patient who underwent plasma-based circulating tumour DNA next generation screening as part of a screening liquid biopsy study. A BRAF V600E mutation detected was deemed pathogenic following discussion at a molecular tumour board, and recommendation of further investigations led to the diagnosis of an occult haematological malignancy.

View Article and Find Full Text PDF

Background: Patients with PAX3/7-FOXO1 fusion-negative rhabdomyosarcomas (fnRMS) harbouring the rare L122R MYOD1 mutation have significantly poorer prognosis than other fnRMS. We undertook a detailed clinicopathological evaluation of a cohort of patients with MYOD1 mutated fnRMS in order to improve risk stratification and treatment options.

Procedure: Histological, mutational and clinical data from a cohort of patients with MYOD1 mutant RMS treated in Europe were analysed.

View Article and Find Full Text PDF

Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up.

View Article and Find Full Text PDF

BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies.

View Article and Find Full Text PDF

Purpose: Prognostic and predictive biomarkers to cyclin-dependent kinases 4 and 6 inhibitors are lacking. Circulating tumor DNA (ctDNA) can be used to profile these patients and dynamic changes in ctDNA could be an early predictor of treatment efficacy. Here, we conducted plasma ctDNA profiling in patients from the PEARL trial comparing palbociclib+fulvestrant versus capecitabine to investigate associations between baseline genomic landscape and on-treatment ctDNA dynamics with treatment efficacy.

View Article and Find Full Text PDF

Unlabelled: Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA).

View Article and Find Full Text PDF
Article Synopsis
  • Rhabdomyosarcomas (RMS) are rare cancers in children and young adults, and the study seeks to explore the use of circulating tumor DNA (ctDNA) as a biomarker for disease monitoring and treatment response because suitable markers are currently lacking.
  • The researchers used RMS mouse models and tested different techniques like PCR and ddPCR to detect ctDNA in blood samples, identifying mutations and alterations related to the disease.
  • They found ctDNA in 14 out of 18 pretreatment plasma samples from RMS patients, with higher levels indicating more severe disease, suggesting that ctDNA can be a useful and less invasive tool for tracking RMS and evaluating treatment efficacy.
View Article and Find Full Text PDF

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data.

View Article and Find Full Text PDF

Background: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations.

View Article and Find Full Text PDF

Objective: Clinical diagnostic sequencing of circulating tumour DNA (ctDNA) is well advanced for adult patients, but application to paediatric cancer patients lags behind.

Methods: To address this, we have developed a clinically relevant (67 gene) NGS capture panel and accompanying workflow that enables sensitive and reliable detection of low-frequency genetic variants in cell-free DNA (cfDNA) from children with solid tumours. We combined gene panel sequencing with low pass whole-genome sequencing of the same library to inform on genome-wide copy number changes in the blood.

View Article and Find Full Text PDF

Unlabelled: The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling and drug screening in newly established patient-derived models in vitro and in vivo. We identified in vitro sensitivity to MEK inhibitors in DIPGs harboring MAPK pathway alterations, but treatment of patient-derived xenograft models and a patient at relapse failed to elicit a significant response.

View Article and Find Full Text PDF

Current diagnostic standards for lymphoproliferative disorders include multiple tests for detection of clonal immunoglobulin (IG) and/or T-cell receptor (TCR) rearrangements, translocations, copy-number alterations (CNAs), and somatic mutations. The EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay was designed as an integrated tool to characterize these alterations by capturing IGH switch regions along with variable, diversity, and joining genes of all IG and TCR loci in addition to clinically relevant genes for CNA and mutation analysis. Diagnostic performance against standard-of-care clinical testing was assessed in a cohort of 280 B- and T-cell malignancies from 10 European laboratories, including 88 formalin-fixed paraffin-embedded samples and 21 reactive lesions.

View Article and Find Full Text PDF

Background: The use of liquid biopsy is of potential high importance for children with high grade (HGG) and diffuse midline gliomas (DMG), particularly where surgical procedures are limited, and invasive biopsy sampling not without risk. To date, however, the evidence that detection of cell-free DNA (cfDNA) or circulating tumor DNA (ctDNA) could provide useful information for these patients has been limited, or contradictory.

Methods: We optimized droplet digital PCR (ddPCR) assays for the detection of common somatic mutations observed in pediatric HGG/DMG, and applied them to liquid biopsies from plasma, serum, cerebrospinal fluid (CSF), and cystic fluid collected from 32 patients.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored the effectiveness and safety of using a combination of CDK4/6 inhibitor (palbociclib) and PI3K inhibitor (taselisib), along with the hormone therapy (fulvestrant), in treating advanced ER-positive HER2-negative breast cancer with specific genetic mutations.
  • - Results showed that the triplet therapy led to a 37.5% response rate in the targeted patient group, while both doublet and triplet therapies were well tolerated and provided durable disease control.
  • - High levels of cyclin E1 and changes in circulating tumor DNA (ctDNA) were linked to shorter progression-free survival, indicating that monitoring these factors could help refine treatment strategies for breast cancer patients.
View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) encompasses molecularly different subgroups, with a subgroup harboring evidence of defective homologous recombination (HR) DNA repair. Here, within a phase 2 window clinical trial, RIO trial (EudraCT 2014-003319-12), we investigate the activity of PARP inhibitors in 43 patients with untreated TNBC. The primary end point, decreased Ki67, occured in 12% of TNBC.

View Article and Find Full Text PDF

While most testicular germ cell tumours (TGCTs) exhibit exquisite sensitivity to platinum chemotherapy, ~10% are platinum resistant. To gain insight into the underlying mechanisms, we undertake whole exome sequencing and copy number analysis in 40 tumours from 26 cases with platinum-resistant TGCT, and combine this with published genomic data on an additional 624 TGCTs. We integrate analyses for driver mutations, mutational burden, global, arm-level and focal copy number (CN) events, and SNV and CN signatures.

View Article and Find Full Text PDF

Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population.

View Article and Find Full Text PDF

Purpose: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC.

View Article and Find Full Text PDF

Background: For children with cancer, the clinical integration of precision medicine to enable predictive biomarker-based therapeutic stratification is urgently needed.

Methods: We have developed a hybrid-capture next-generation sequencing (NGS) panel, specifically designed to detect genetic alterations in paediatric solid tumours, which gives reliable results from as little as 50 ng of DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue. In this study, we offered an NGS panel, with clinical reporting via a molecular tumour board for children with solid tumours.

View Article and Find Full Text PDF

Sequential profiling of plasma cell-free DNA (cfDNA) holds immense promise for early detection of patient progression. However, how to exploit the predictive power of cfDNA as a liquid biopsy in the clinic remains unclear. RAS pathway aberrations can be tracked in cfDNA to monitor resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer.

View Article and Find Full Text PDF

Background: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies.

Methods: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction.

Results: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF