Publications by authors named "Paula Pincela Lins"

Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies.

View Article and Find Full Text PDF

Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs).

View Article and Find Full Text PDF

Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents.

View Article and Find Full Text PDF

Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic--glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) and cell membrane nanoghosts are excellent coatings for nanomaterials, providing enhanced delivery in the target sites and evasion of the immune system. These cell-derived coatings allow the exploration of the delivery properties of the nanoparticles without stimulation of the immune system. Despite the advances reported on the use of EVs and cell-membrane coatings for nanomedicine applications, there are no standards to compare the benefits and main differences between these technologies.

View Article and Find Full Text PDF

Studies have shown that the level of ascorbic acid (AA) is reduced in the brain of Alzheimer's disease (AD) patients. However, its effect on amyloid-β 1-42 (Aβ) aggregation has not yet been elucidated. Here we investigated for the first time the effect of AA on Aβ aggregation using fluorescence assay, circular dichroism, atomic force microscopy, isothermal titration calorimetry, ligand docking, and molecular dynamics.

View Article and Find Full Text PDF

Branched anisotropic gold nanostructures present distinguished performance acting both as contrast agents for photoacoustic imaging and as active agents for photothermal therapies. Despite advances in their fabrication methods, the synthesis of such gold nanomaterials in a simple and reproducible way is still a challenge. In this paper, we report the development of branched anisotropic gold nanoparticles, the so-called gold nanoflowers (AuNFs), as near-infrared active theragnostic materials for cancer therapy and diagnosis.

View Article and Find Full Text PDF