Publications by authors named "Paula Oroz"

Article Synopsis
  • * Traditional methods using ionic intermediates can be complex, especially for specific glycosides linked to amino acids, which are important in biological functions.
  • * This study investigates new photoredox catalytic methods for synthesizing these compounds, using strategies like photoredox Giese reactions and photoredox glycosylations with selenoglycosides to achieve more efficient results.
View Article and Find Full Text PDF

Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide.

View Article and Find Full Text PDF

Pancreatic cancer is one of the deadliest cancers worldwide, mainly due to late diagnosis. Therefore, there is an urgent need for novel diagnostic approaches to identify the disease as early as possible. We have developed a diagnostic assay for pancreatic cancer based on the detection of naturally occurring tumor associated autoantibodies against Mucin-1 (MUC1) using engineered glycopeptides on nanoparticle probes.

View Article and Find Full Text PDF

Chemo- and diastereoselective 1,4-conjugate additions of anionic and radical -nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. Of particular importance, radical carbon photolysis by a catalytic photoredox process using a simple method with a metal-free photocatalyst provides exceptional yields and selectivities at room temperature. Moreover, these 1,4-conjugate additions offer an excellent starting point for synthesizing enantiomerically pure carbon-β-substituted unnatural α-amino acids (UAAs), which could have a high potential for applications in chemical biology.

View Article and Find Full Text PDF

Efficient methodologies for synthesizing enantiopure α-deuterated derivatives of serine, cysteine, selenocysteine, and 2,3-diaminopropanoic acid have been developed. H/D exchange was achieved by deprotonation of a chiral bicyclic serine equivalent followed by selective deuteration. Additionally, diastereoselective additions of thiols, selenols, and amines to a chiral bicyclic dehydroalanine in deuterated alcohols allowed site-selective deuteration at the Cα atom of cysteine, selenocysteine, and 2,3-diaminopropanoic acid derivatives.

View Article and Find Full Text PDF

Chiral bicyclic -acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem ,-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters.

View Article and Find Full Text PDF

The first totally chemo- and diastereoselective 1,4-conjugate additions of -nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. The methodology is simple and does not require any catalyst, providing exceptional yields at room temperature, and involves the treatment of the corresponding diselenide compound with NaBH in the presence of the Dha. These -Michael additions provide an excellent channel for the synthesis of enantiomerically pure selenocysteine (Sec) derivatives, which pose high potential for chemical biology applications.

View Article and Find Full Text PDF

The highly diastereoselective 1,4-conjugate additions of several nitrogen nucleophiles to chiral bicyclic dehydroalanines have been assessed effectively at room temperature in good to excellent yields without needing any catalyst or additional base. This methodology is general, simple, oxygen and moisture tolerant, high-yielding, totally chemo- and stereoselective. This procedure offers an efficient and practical approach for the synthesis of -substituted α,β-diamino acids, such as 1-isohistidine, τ-histidinoalanine, β-benzylaminoalanine, β-(piperidin-1-yl)alanine, β-(azepan-1-yl)alanine, and fluorescent and ciprofloxacin-containing amino acid derivatives.

View Article and Find Full Text PDF

Starting from commercially available ( S)-isoserine and effectively accessible ( S)-α-methylserine, enantiopure cyclic sulfamidates have been prepared as chiral building blocks for the synthesis of various S- and O-glycosylated amino acid derivatives, including unnatural variants of the Tn antigen, through highly chemo-, regio-, and stereoselective nucleophilic ring-opening reactions with carbohydrate C1- S- and C1- O-nucleophiles.

View Article and Find Full Text PDF

The aim of this study was to evaluate the impact of the lack of inducible NO synthase (iNOS) on body weight and adipose tissue mass as well as on plasma leptin and adiponectin in basal conditions and 6 h after lipopolysaccharide (LPS) administration in mice. Body weight was not different among male, six-week-old wild-type (WT) and iNOS-/- animals. However, the amount of epididymal white adipose tissue (EWAT) in iNOS-/- mice was significantly reduced (P<0.

View Article and Find Full Text PDF