Publications by authors named "Paula Moyano"

Article Synopsis
  • - PFOS, an industrial chemical linked to cognitive decline, negatively affects learning and memory by disrupting key brain functions, particularly in cholinergic neurons that are vital for cognitive health.
  • - Research using SN56 cholinergic cells revealed that PFOS decreases thyroid receptor activity, disrupts cholinergic and glutamatergic transmission, and impacts the levels of essential neurotransmitters through various biochemical changes.
  • - The study suggests that reducing thyroid hormone activity due to PFOS exposure contributes to neurodegeneration, but supplementing with thyroid hormone (T3) can partially restore normal function, highlighting potential therapeutic approaches.
View Article and Find Full Text PDF

Protein kinases are key regulators of numerous biological processes and aberrant kinase activity can cause various diseases, particularly cancer. Herein, we report the identification of new series of highly selective kinase inhibitors based on the thieno[3,2-b]pyridine scaffold. The weak interaction of the thieno[3,2-b]pyridine core with the kinase hinge region allows for profoundly different binding modes all of which maintain high kinome-wide selectivity, as illustrated by the isomers MU1464 and MU1668.

View Article and Find Full Text PDF

Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/β-Catenin and NGF/P75/TrkA pathways disruption and cell death.

View Article and Find Full Text PDF

Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death.

View Article and Find Full Text PDF

The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline.

View Article and Find Full Text PDF

Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure.

View Article and Find Full Text PDF

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms.

View Article and Find Full Text PDF

Acute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aβ and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3β (p-GSK3β; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss.

View Article and Find Full Text PDF

Bisphenol-A (BPA), a polymer component extensively used, produces memory and learning alterations after acute and long-term exposure. However, the mechanisms are not well known. Cortex and hippocampus neuronal networks control cognitive functions, which are innervated by basal forebrain cholinergic neurons (BFCN), and their neurodegeneration induces cognitive dysfunctions.

View Article and Find Full Text PDF

Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aβ), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity.

View Article and Find Full Text PDF

Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities.

View Article and Find Full Text PDF

Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities.

View Article and Find Full Text PDF

Neurodegenerative diseases have been associated with brain metal accumulation, which produces oxidative stress (OS), matrix metalloproteinases (MMPs) induction, and neuronal cell death. Several metals have been reported to downregulate both the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the antioxidant enzymes regulated by it, mediating OS induction and neurodegeneration. Among a recently discovered family of multitarget 7-amino-phenanthridin-6-one derivatives () the most promising compounds were tested against metal-induced cell death and OS in SN56 cells.

View Article and Find Full Text PDF

The biocide chlorpyrifos (CPF) was described to increase breast cancer risk in humans, to produce breast cancer in animals, and to induce cell proliferation in MCF-7 and MDA-MB-231 cells after 1 and 14 days of treatment. The entire mechanisms related to these CPF actions remain unknown. CPF induced cell proliferation in MCF-7 and MDA-MB-231 cells after 1 and 14 days of treatment by AhR activation through the PGE2/Wnt/β-catenin pathway and HSP90 and HSP70 overexpression.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) biocide, is associated with breast cancer. The processes underlying this association have not been elucidated to date. CPF increases MCF-7 and MDA-MB-231 cell proliferation after acute and long-term treatment, partially through KIAA1363 overexpression and aryl-hydrocarbon receptor activation but also through estrogen receptor-alpha activation after 24 h exposure in MCF-7 cells, suggesting other mechanisms may be involved.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies.

View Article and Find Full Text PDF

The herbicide paraquat (PQ) induces hippocampal neuronal cell loss and cognitive dysfunction after one and repeated treatment. All the mechanisms involved in these effects are not well understood. Single and repeated PQ treatment increased Aβ and tau protein levels, through HSP70 and TFEB downregulation and proteasome 20S inhibition, producing cell death in primary hippocampal neurons associated with cognitive decline.

View Article and Find Full Text PDF

Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or βAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aβ) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes.

View Article and Find Full Text PDF

Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aβ) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress.

View Article and Find Full Text PDF

Organophosphate biocide chlorpyrifos (CPF) is involved with breast cancer. However, the mechanisms remain unknown. CPF increases cell division in MCF-7 cells, by estrogen receptor alpha (ERα) activation, although it is a weak ERα agonist, suggesting other mechanisms should be involved.

View Article and Find Full Text PDF

The extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment.

View Article and Find Full Text PDF

The biocide chlorpyrifos (CPF) was shown to produce cognition impairment following single and long-term exposure. The complete mechanisms that lead to the CPF induced cognitive disorders remain to be discovered. Aβ and tau proteins production was induced in basal forebrain SN56 cholinergic cells, by CPF, through proteasome 20S inhibition and Rab5 overexpression, leading to cell death both after acute and repeated administration, which was related with cognitive disorders induction.

View Article and Find Full Text PDF

Amitraz is a neurotoxic formamidine pesticide that induces cell death in hippocampal neurons, although its mechanisms are unknown. Amitraz produces reactive oxygen species (ROS), which could lead to cell death. Amitraz was shown to induce different cytochrome P450 (CYP) isoenzymes involved with ROS and apoptotic cell death induction.

View Article and Find Full Text PDF

Manganese (Mn) induces cognitive disorders and basal forebrain (BF) cholinergic neuronal loss, involved on learning and memory regulation, which could be the cause of such cognitive disorders. However, the mechanisms through which it induces these effects are unknown. We hypothesized that Mn could induce BF cholinergic neuronal loss through oxidative stress generation, cholinergic transmission and AChE variants alteration that could explain Mn cognitive disorders.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu1i8en046f90fm29oab2291e44orsbhs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once