Publications by authors named "Paula M Pijut"

Cutting propagation plays a large role in the forestry and horticulture industries where superior genotypes need to be clonally multiplied. Integral to this process is the ability of cuttings to form adventitious roots. Recalcitrance to adventitious root development is a serious hurdle for many woody plant propagation systems including black walnut (Juglans nigra L.

View Article and Find Full Text PDF

Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones.

View Article and Find Full Text PDF

This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp.

View Article and Find Full Text PDF

Flowering control is one of the several strategies for gene containment of transgenic plants. TERMINAL FLOWER 1 (TFL1) is known to be involved in the transcriptional repression of genes for inflorescence development. Two TFL1 transcripts with different 3' UTR were cloned from black cherry (Prunus serotina Ehrh.

View Article and Find Full Text PDF

Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits.

View Article and Find Full Text PDF

A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and beta-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 microM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration.

View Article and Find Full Text PDF

Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula x P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce salicylic acid levels in other model systems and thereby elucidate roles for salicylic acid in plant signaling, transgenic poplars had similar foliar levels of salicylic acid and catechol to that of non-transformed controls and exhibited no morphological phenotypes.

View Article and Find Full Text PDF

Approaches for the development of disease-resistant butternut (Juglans cinerea L.) are reviewed. Butternut is a threatened fine hardwood throughout its natural range in eastern North America because of the invasion of the exotic fungus, Sirococcus clavigignenti-juglandacearum Nair, Kostichka and Kuntz, which causes butternut canker.

View Article and Find Full Text PDF