Publications by authors named "Paula M Mabee"

Evolutionary phenotypic transitions, such as the fin-to-limb transition in vertebrates, result from modifications in related proteins and their interactions, often in response to changing environment. Identifying these alterations in protein networks is crucial for a more comprehensive understanding of these transitions. However, previous research has not attempted to compare protein-protein interaction (PPI) networks associated with evolutionary transitions, and most experimental studies concentrate on a limited set of proteins.

View Article and Find Full Text PDF

Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent "parts", but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies-structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies.

View Article and Find Full Text PDF

Background: Identification of genes responsible for anatomical entities is a major requirement in many fields including developmental biology, medicine, and agriculture. Current wet lab techniques used for this purpose, such as gene knockout, are high in resource and time consumption. Protein-protein interaction (PPI) networks are frequently used to predict disease genes for humans and gene candidates for molecular functions, but they are rarely used to predict genes for anatomical entities.

View Article and Find Full Text PDF

There is a growing body of research on the evolution of anatomy in a wide variety of organisms. Discoveries in this field could be greatly accelerated by computational methods and resources that enable these findings to be compared across different studies and different organisms and linked with the genes responsible for anatomical modifications. Homology is a key concept in comparative anatomy; two important types are historical homology (the similarity of organisms due to common ancestry) and serial homology (the similarity of repeated structures within an organism).

View Article and Find Full Text PDF

Natural language descriptions of organismal phenotypes, a principal object of study in biology, are abundant in the biological literature. Expressing these phenotypes as logical statements using ontologies would enable large-scale analysis on phenotypic information from diverse systems. However, considerable human effort is required to make these phenotype descriptions amenable to machine reasoning.

View Article and Find Full Text PDF

Data synthesis required for large-scale macroevolutionary studies is challenging with the current tools available for integration. Using a classic question regarding the frequency of paired fin loss in teleost fishes as a case study, we sought to create automated methods to facilitate the integration of broad-scale trait data with a sizable species-level phylogeny. Similar to the evolutionary pattern previously described for limbs, pelvic and pectoral fin reduction and loss are thought to have occurred independently multiple times in the evolution of fishes.

View Article and Find Full Text PDF

Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications ('monographs') and those used in phylogenetic analyses ('matrices').

View Article and Find Full Text PDF

Background: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required.

View Article and Find Full Text PDF

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments.

View Article and Find Full Text PDF

Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish.

View Article and Find Full Text PDF

The reality of larger and larger molecular databases and the need to integrate data scalably have presented a major challenge for the use of phenotypic data. Morphology is currently primarily described in discrete publications, entrenched in noncomputer readable text, and requires enormous investments of time and resources to integrate across large numbers of taxa and studies. Here we present a new methodology, using ontology-based reasoning systems working with the Phenoscape Knowledgebase (KB; kb.

View Article and Find Full Text PDF

Background: Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology.

View Article and Find Full Text PDF

Background: Spatial terminology is used in anatomy to indicate precise, relative positions of structures in an organism. While these terms are often standardized within specific fields of biology, they can differ dramatically across taxa. Such differences in usage can impair our ability to unambiguously refer to anatomical position when comparing anatomy or phenotypes across species.

View Article and Find Full Text PDF

Background: Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent 'natural' phenotypic variation across species.

View Article and Find Full Text PDF

Background: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships.

Description: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver.

View Article and Find Full Text PDF

The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology.

View Article and Find Full Text PDF

Although the gill-arch osteology of Cypriniformes has been well studied, comparable works on gill-arch musculature are scarce. The focus of previous studies has been on Cyprinidae while other families have received little or no attention. Consequently, generalizations for Cypriniformes have been made from the musculature of cyprinid gill-arches.

View Article and Find Full Text PDF

The development and homologies of the median elements of the ventral hyoid and branchial arches of Cypriniformes have been unclear. We compared the developmental morphology of this region across five species (Cycleptus elongatus, Luxilus zonatus, Danio rerio, Devario auropurpureus, and Cobitis striata), representing three of five major clades of cypriniforms. The development of basibranchial 1 is similar in catostomids and cyprinids, where a single, elongate, basihyal + anterior copula divides into separate elements.

View Article and Find Full Text PDF

The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.

View Article and Find Full Text PDF

Background: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies.

View Article and Find Full Text PDF

Skeletal elements of the gill arches of adult cypriniform fishes vary widely in number, size, and shape and are important characters in morphologically based phylogenetic studies. Understanding the developmental basis for this variation is thus phylogenetically significant but also important in relation to the many developmental genetic and molecularly based studies of the early developing and hence experimentally tractable gill arches in the zebrafish, a cyprinid cypriniform. We describe the sequence of the chondrification and ossification of the pharyngeal arches and associated dermal bones from Catostomus commersonii (Catostomidae, Cypriniformes) and make selected comparisons to other similarly described pharyngeal arches.

View Article and Find Full Text PDF

Timing and pattern of expression of ten candidate segmentation genes or gene pairs were reviewed or examined in developing median fins of late-stage zebrafish, Danio rerio. We found a general correspondence in timing and pattern of expression between zebrafish fin radial segmentation and tetrapod joint development, suggesting that molecular mechanisms underlying radial segmentation have been conserved over 400 million years of evolution. Gene co-expression during segmentation (5.

View Article and Find Full Text PDF

One focus of developmental biology is to understand how genes regulate development, and therefore examining the phenotypic effects of gene mutation is a major emphasis in studies of zebrafish and other model organisms. Genetic change underlies alterations in evolutionary characters, or phenotype, and morphological phylogenies inferred by comparison of these characters. We will utilize both existing and new ontologies to connect the evolutionary anatomy and image database that is being developed in the Cypriniformes Tree of Life project to the Zebrafish Information Network (HYPERLINK "file://localhost/Library/Local%20Settings/Temp/zfin.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding evolutionary changes is limited by poor databases of evolutionary anatomy and a lack of computational methods to identify candidate genes and regulators.
  • Model organism studies benefit from shared ontologies in genomic databases, which help in organizing and using data effectively.
  • Proposing the development of evolutionary and genomics databases to share information through common phenotype and anatomy ontologies could enhance research on genetic changes, character evolution, and biodiversity links to evolution and ecology.
View Article and Find Full Text PDF

Environmental conditions such as temperature and water velocity may induce changes among alternative developmental pathways, i.e. phenotypic responses, in vertebrates.

View Article and Find Full Text PDF