Native extracts from orange peels were obtained by a conventional method using acetone and, an alternative method using ionic liquid (1-butyl-3-methylimidazolium chloride ([Cmim]Cl)). The bioaccessibilities and cellular uptakes of carotenoids, esters and chlorophylls were evaluated, since the influence of esterification on bioaccessibility and bioavailability is not well established. For this, the extracts were emulsified, submitted to in vitro simulated digestion model according to the INFOGEST protocol, followed by uptake by Caco-2 cells.
View Article and Find Full Text PDFOrange peel is a by-product produced in large amounts that acts as a source of natural pigments such as carotenoids. Xanthophylls, the main carotenoid class found in citrus fruit, can be present in its free form or esterified with fatty acids, forming esters. This esterification modifies the compound's chemical properties, affecting their bioavailability in the human body, and making it important to characterize the native carotenoid composition of food matrices.
View Article and Find Full Text PDFThe aim of this study was to develop a new method for carotenoid extraction from orange peel, using ionic liquid (IL) to replace conventional organic solvents, assisted by ultrasound. Four different IL were tested: 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF]), 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]), and 1-hexyl-3-methylimidazolium chloride ([HMIM][Cl]). Response surface methodology was applied in order to optimize the carotenoid extraction conditions, and Amberlite XAD-7HP resin was used to separate the carotenoids from the IL, allowing their recovery.
View Article and Find Full Text PDFAn ultrasound-assisted preparation of a series of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides that proceeds via the efficient reaction of chalcones with aminoguanidine hydrochloride under clean conditions is described.
View Article and Find Full Text PDF