Cyclic nucleotide-dependent phosphodiesterases (PDEs) play essential roles in regulating the malaria parasite life cycle, suggesting that they may be promising antimalarial drug targets. PDE inhibitors are used safely to treat a range of noninfectious human disorders. Here, we report three subseries of fast-acting and potent PDEβ inhibitors that block asexual blood-stage parasite development and that are also active against human clinical isolates.
View Article and Find Full Text PDFIntroduction: Around 10% of the coding potential of is constituted by two poorly understood gene families, the and loci, thought to be involved in host-pathogen interactions. Their repetitive nature and high GC content have hindered sequence analysis, leading to exclusion from whole-genome studies. Understanding the genetic diversity of families is essential to facilitate their potential translation into tools for tuberculosis prevention and treatment.
View Article and Find Full Text PDFThe genetics underlying tuberculosis (TB) pathophysiology are poorly understood. Human genome-wide association studies have failed so far to reveal reproducible susceptibility loci, attributed in part to the influence of the underlying Mycobacterium tuberculosis (Mtb) bacterial genotype on the outcome of the infection. Several studies have found associations of human genetic polymorphisms with Mtb phylo-lineages, but studies analysing genome-genome interactions are needed.
View Article and Find Full Text PDFThe genomic diversity of Plasmodium malariae malaria parasites is understudied, partly because infected individuals tend to present with low parasite densities, leading to difficulties in obtaining sufficient parasite DNA for genome analysis. Selective whole genome amplification (SWGA) increases the relative levels of pathogen DNA in a clinical sample, but has not been adapted for P. malariae parasites.
View Article and Find Full Text PDF