Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4).
View Article and Find Full Text PDFThe microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs).
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
March 2021
Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease.
View Article and Find Full Text PDFThe microenvironment of solid tumors plays an essential role in tumor progression. In lung cancer, the stromal cells produce a fibronectin rich extracellular matrix which is known to contribute to both tumor metastasis and drug resistance. Due to its conformational lability, fibronectin is considerably remodeled by the contractile forces of the fibrotic microenvironment within the tumor stroma.
View Article and Find Full Text PDFChronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
October 2017
Chronic inflammation and maladaptive repair contribute to the development of fibrosis that negatively impacts quality of life and organ function. The toll-like receptor (TLR) system is a critical node in the tissue response to both exogenous (pathogen-associated) and endogenous (damage-associated) molecular pattern factors (PAMPs and DAMPs, respectively). The development of novel TLR ligand-, pathway-, and/or target gene-specific therapeutics may have clinical utility in the management of the exuberant inflammatory/fibrotic tissue response to injury without compromising the host defense to pathogens.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
October 2017
Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling.
View Article and Find Full Text PDFAlternative splicing of fibronectin increases expression of the EDA isoform of fibronectin (EDAFn), a damage-associated molecular pattern molecule, which promotes fibro-inflammatory disease through the activation of toll-like receptors. Our studies indicate that the fibronectin EDA domain drives two waves of gene expression in human dermal fibroblasts. The first wave, seen at 2 hours, consisted of inflammatory genes, VCAM1, and tumor necrosis factor.
View Article and Find Full Text PDFBackground: Fibronectin is a mechanically sensitive protein which is organized in the extracellular matrix as a network of interacting fibrils. The lung tumor stroma is enriched for fibronectin which is thought to contribute to metastasis and drug resistance. Fibronectin is an elastic, multi-modular protein made up of individually folded domains, some of which can stretch in response to increased mechanical tension.
View Article and Find Full Text PDFDuring the early phase of wound healing, first plasma fibronectin (FN) and then in situ FN are deposited at the site of injury. In situ FN--FN made by tissue cells at the injury site--often contains an extra domain A (EDA) insert. Multiple wound-related signal transduction pathways control the deposition of EDA FN, and the EDA insert can in turn trigger pathways that induce inflammation, increased extracellular matrix molecule deposition including FN and collagen, and activation of fibroblasts.
View Article and Find Full Text PDFActivation of β1 integrins in dormant tumor cells has been linked to metastatic progression, suggesting that therapies designed to maintain β1 integrins in an inactive state may be useful in the prevention of metastatic disease. Our earlier studies have demonstrated that EGF regulates the activation state of the α5β1 integrin in EGFR overexpressing tumor cells through an ERK/p90RSK signaling pathway. Activation of this pathway by EGF resulted in the filamin A dependent inactivation of the α5β1 integrin receptor for fibronectin.
View Article and Find Full Text PDFThe fibronectin matrix provides mechanical and biochemical information to regulate homeostatic and pathological processes within tissues. Fibronectin consists of independently-folded modules termed Types I, II and III. In response to cellular contractile force, Type III domains unfold to initiate a series of homophilic binding events which result in the assembly of a complex network of intertwining fibrils.
View Article and Find Full Text PDFPrompt deposition of fibronectin-rich extracellular matrix is a critical feature of normal development and the host-response to injury. Fibronectin isoforms that include the EDA and EDB domains are prominent in these fibronectin matrices. We now report using human dermal fibroblast cultures that the EDA domain of fibronectin or EDA-derived peptides modeled after the C-C' loop promote stress fiber formation and myosin-light chain phosphorylation.
View Article and Find Full Text PDFFibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis.
View Article and Find Full Text PDFThe fibronectin matrix plays a crucial role in the regulation of angiogenesis during development, tissue repair and pathogenesis. Previous work has identified a fibronectin-derived homophilic binding peptide, anastellin, as an effective inhibitor of angiogenesis; however, its mechanism of action is not well understood. In the present study, we demonstrate that anastellin selectively inhibits microvessel cell signaling in response to the VEGF165 isoform, but not VEGF121, by preventing the assembly of the complex containing the VEGF receptor and neuropilin-1.
View Article and Find Full Text PDFThe relationship between cancer progression and chronic inflammation is well documented but poorly understood. The innate immune system has long been recognized as the first line of defense against invading pathogens. More recently, endogenous molecules released from tissue matrix (Damage Associated Molecular Patterns [DAMPs]) following tissue injury or periods of active matrix remodeling have also been identified as regulators of innate immunity.
View Article and Find Full Text PDFBackground: Regulation of integrin activation has important implications for tumor cell invasion and metastasis.
Results: EGF activates ERK/p90RSK and Rho/Rho kinase signaling in A431 and DiFi colon cancer cells, leading to phosphorylation of filamin A (FLNa) and inactivation of the α5β1 integrin receptor.
Conclusion: EGF promotes α5β1 inactivation through the p90RSK-dependent phosphorylation of FLNa.
Recent studies have pointed to changes in tissue mechanics as a contributory element to the development of malignancies. Increased tissue rigidity is associated with the unfolding of the Type III domains of fibronectin within the extracellular matrix. The consequences of this unfolding on cellular functions within the lung are not well understood.
View Article and Find Full Text PDFRemodeling of the fibronectin matrix occurs during a variety of pathological and regenerative processes. Cellular generated tensional forces can alter the secondary and tertiary structure of the fibronectin matrix and regulate the exposure of cryptic activities that directly impact cell behavior. In the present study, we evaluated the effect of the partially unfolded Type III fibronectin module, FnIII-1c, on gene expression in dermal fibroblasts.
View Article and Find Full Text PDFAnastellin is an angiogenesis inhibitor derived from the first type III repeat of fibronectin (FN). Anastellin binds to fibronectin and promotes the polymerization of soluble fibronectin into a highly polymerized form termed superfibronectin. In addition, anastellin also causes remodeling of pre-existing fibronectin matrix and modulates cell signaling pathways in both endothelial cells and fibroblasts.
View Article and Find Full Text PDFAngiogenesis is regulated by integrin-dependent cell adhesion and the activation of specific cell surface receptors on vascular endothelial cells by angiogenic factors. Lysophosphatidic acid (LPA) and sphingosine-1 phosphate (S1P) are bioactive lysophospholipids that activate G protein-coupled receptors that stimulate phosphatidylinositol 3-kinase (PI3K), Ras, and Rho effector pathways involved in vascular cell survival, proliferation, adhesion, and migration. Previous studies have shown that anastellin, a fragment of the first type III module of fibronectin, functions as an antiangiogenic peptide suppressing tumor growth and metastasis.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
November 2008
Background: Endostatin and anastellin, fragments of collagen type XVIII and fibronectin, respectively, belong to a family of endogenous inhibitors of angiogenesis which inhibit tumor growth and metastasis in a number of mouse models of human cancer. The mechanism of action of these inhibitors is not well understood, but they have great potential usefulness as non-toxic long-term therapy for cancer treatment.
Methods: In this study, we compare the anti-angiogenic properties of endostatin and anastellin using cell proliferation and transwell migration assays.
The relationship between the plasminogen activator system and integrin function is well documented but incompletely understood. The mechanism of uPAR-mediated signaling across the membrane and the molecular basis of uPAR-dependent activation of integrins remain important issues. The present study was undertaken to identify the molecular intermediates involved in the uPAR signaling pathway controlling alpha5beta1-integrin activation and fibronectin polymerization.
View Article and Find Full Text PDFThe plasminogen activation system regulates matrix remodeling through both proteolytic and non-proteolytic mechanisms. Studies were undertaken to determine the effects of the plasminogen activator inhibitor 1 (PAI1) on the assembly of the fibronectin matrix. The addition of PAI1 to MG-63 cells caused a 1.
View Article and Find Full Text PDFTumor invasion and metastasis are the main causes of death from cancer. Epithelial to mesenchymal transition (EMT) is a determining step for a cancer cell to progress from a noninvasive to invasive state. Krüppel-like factor 8 (KLF8) plays a key role in oncogenic transformation and is highly overexpressed in several types of invasive human cancer, including breast cancer.
View Article and Find Full Text PDF