Publications by authors named "Paula J M Van Kleeff"

(whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors.

View Article and Find Full Text PDF

The phloem-feeding insect is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which was salivating.

View Article and Find Full Text PDF

Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Many proteins with defined functions in salt stress adaptation are controlled through interactions with members of the 14-3-3 family. In the present study, we generated three 14-3-3 quadruple knockout mutants (qKOs: , and ) to study the role of six non-epsilon group 14-3-3 proteins for salt stress adaptation.

View Article and Find Full Text PDF

To date, few phenotypes have been described for Arabidopsis 14-3-3 mutants or the phenotypes showing the role of 14-3-3 in plant responding to abiotic stress. Although one member of the 14-3-3 protein family (14-3-3 omicron) was shown to be involved in the proper operation of Fe acquisition mechanisms at physiological and gene expression levels in Arabidopsis thaliana, it remains to be explored whether other members play a role in regulating iron acquisition. To more directly and effectively observe whether members of 14-3-3 non-epsilon group have a function in Fe-deficiency adaptation, three higher order quadruple KOs, kappa/lambda/phi/chi (klpc), kappa/lambda/upsilon/nu(klun), and upsilon/nu/phi/chi (unpc) were generated and studied for physiological analysis in this study.

View Article and Find Full Text PDF

The species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects.

View Article and Find Full Text PDF

The phloem-feeding whitefly is a serious pest to a broad range of host plants, including many economically important crops such as tomato. These insects serve as a vector for various devastating plant viruses. It is known that whiteflies are capable of manipulating host-defense responses, potentially mediated by effector molecules in the whitefly saliva.

View Article and Find Full Text PDF

Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580).

View Article and Find Full Text PDF

Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59.

View Article and Find Full Text PDF

Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases.

View Article and Find Full Text PDF

Protein phosphorylation is essential for many aspects of plant growth and development. To fully modulate the activity of specific proteins after phosphorylation, interaction with members of the 14-3-3 family is necessary. 14-3-3 Proteins are important for many processes because they "assist" a wide range of target proteins with divergent functions.

View Article and Find Full Text PDF