Publications by authors named "Paula J Gomez-Gonzalez"

Introduction: Around 10% of the coding potential of is constituted by two poorly understood gene families, the and loci, thought to be involved in host-pathogen interactions. Their repetitive nature and high GC content have hindered sequence analysis, leading to exclusion from whole-genome studies. Understanding the genetic diversity of families is essential to facilitate their potential translation into tools for tuberculosis prevention and treatment.

View Article and Find Full Text PDF

The genetics underlying tuberculosis (TB) pathophysiology are poorly understood. Human genome-wide association studies have failed so far to reveal reproducible susceptibility loci, attributed in part to the influence of the underlying Mycobacterium tuberculosis (Mtb) bacterial genotype on the outcome of the infection. Several studies have found associations of human genetic polymorphisms with Mtb phylo-lineages, but studies analysing genome-genome interactions are needed.

View Article and Find Full Text PDF

With >1 million associated deaths in 2020, human tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis remains one of the deadliest infectious diseases. A plethora of genomic tools and bioinformatics pipelines have become available in recent years to assist the whole genome sequencing of M. tuberculosis.

View Article and Find Full Text PDF
Article Synopsis
  • * New anti-TB drugs like bedaquiline (BDQ), delamanid (DLM), and pretomanid (PTM) have been approved for treating drug-resistant TB, but there are increasing cases of resistance developing against these drugs.
  • * The study examined over 33,000 TB isolates to identify genetic variations linked to resistance, highlighting significant mutations and their potential impact on treatment effectiveness, ultimately aiming to enhance understanding and improve outcomes for TB management.
View Article and Find Full Text PDF

The genomic diversity of Plasmodium malariae malaria parasites is understudied, partly because infected individuals tend to present with low parasite densities, leading to difficulties in obtaining sufficient parasite DNA for genome analysis. Selective whole genome amplification (SWGA) increases the relative levels of pathogen DNA in a clinical sample, but has not been adapted for P. malariae parasites.

View Article and Find Full Text PDF

Human tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a complex disease, with a spectrum of outcomes. Genomic, transcriptomic and methylation studies have revealed differences between Mtb lineages, likely to impact on transmission, virulence and drug resistance. However, so far no studies have integrated sequence-based genomic, transcriptomic and methylation characterisation across a common set of samples, which is critical to understand how DNA sequence and methylation affect RNA expression and, ultimately, Mtb pathogenesis.

View Article and Find Full Text PDF