Background: Chronic traumatic encephalopathy, diagnosed postmortem (hyperphosphorylated tau), is preceded by traumatic encephalopathy syndrome with worsening cognition and behavior/mood disturbances, over years. Transcranial photobiomodulation (tPBM) may promote improvements by increasing ATP in compromised/stressed cells and increasing local blood, lymphatic vessel vasodilation.
Objective: Aim 1: Examine cognition, behavior/mood changes Post-tPBM.
Approximately 25-30% of veterans deployed to Kuwait, 1990-91, report persistent multi-symptom Gulf War Illness (GWI) likely from neurotoxicant exposures. Photobiomodulation (PBM) in red/near-infrared (NIR) wavelengths is a safe, non-invasive modality shown to help repair hypoxic/stressed cells. Red/NIR wavelengths are absorbed by cytochrome C oxidase in mitochondria, releasing nitric oxide (increasing local vasodilation), and increasing adenosine tri-phosphate production.
View Article and Find Full Text PDFTo examine effects of four different transcranial, red/near-infrared (NIR), light-emitting diode (tLED) protocols on naming ability in persons with aphasia (PWA) due to left hemisphere (LH) stroke. This is the first study to report beneficial effects from tLED therapy in stroke, and parallel changes on functional magnetic resonance imaging (fMRI). Six PWA, 2-18 years poststroke, in whom 18 tLED treatments were applied (3 × /week, 6 weeks) using LED cluster heads: 500 mW, red (633 nm) and NIR (870 nm), 22.
View Article and Find Full Text PDFWe review the general topic of traumatic brain injury (TBI) and our research utilizing transcranial photobiomodulation (tPBM) to improve cognition in chronic TBI using red/near-infrared (NIR) light-emitting diodes (LEDs) to deliver light to the head. tPBM improves mitochondrial function increasing oxygen consumption, production of adenosine triphosphate (ATP), and improving cellular energy stores. Nitric oxide is released from the cells increasing regional blood flow in the brain.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate: 1) the feasibilty of administering a modified CILT (mCILT) treatment session immediately after TMS; and 2) if this combined therapy could improve naming and elicited propositional speech in chronic, nonfluent aphasia.
Methods: Two chronic stroke patients with nonfluent aphasia (mild-moderate and severe) each received twenty minutes of rTMS to suppress the right pars triangularis, followed immediately by three hours of mCILT (5 days/week, 2 weeks). (Each patient had received TMS alone, 2-6 years prior.
This pilot, open-protocol study examined whether scalp application of red and near-infrared (NIR) light-emitting diodes (LED) could improve cognition in patients with chronic, mild traumatic brain injury (mTBI). Application of red/NIR light improves mitochondrial function (especially in hypoxic/compromised cells) promoting increased adenosine triphosphate (ATP) important for cellular metabolism. Nitric oxide is released locally, increasing regional cerebral blood flow.
View Article and Find Full Text PDFRepetitive transcranial magnetic stimulation (rTMS) has been reported to improve naming in chronic stroke patients with nonfluent aphasia since 2005. In part 1, we review the rationale for applying slow, 1-Hz, rTMS to the undamaged right hemisphere in chronic nonfluent aphasia patients after a left hemisphere stroke; and we present a transcranial magnetic stimulation (TMS) protocol used with these patients that is associated with long-term, improved naming post-TMS. In part 2, we present results from a case study with chronic nonfluent aphasia where TMS treatments were followed immediately by speech therapy (constraint-induced language therapy).
View Article and Find Full Text PDFThis study sought to discover if an optimum 1 cm(2) area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS.
View Article and Find Full Text PDFThis review of our research with rTMS to treat aphasia contains four parts: Part 1 reviews functional brain imaging studies related to recovery of language in aphasia with emphasis on nonfluent aphasia. Part 2 presents the rationale for using rTMS to treat nonfluent aphasia patients (based on results from functional imaging studies). Part 2 also reviews our current rTMS treatment protocol used with nonfluent aphasia patients, and our functional imaging results from overt naming fMRI scans, obtained pre- and post- a series of rTMS treatments.
View Article and Find Full Text PDFThe arcuate fasciculus (AF) is a white matter pathway traditionally considered to connect left Broca's area with posterior language zones. We utilized diffusion tensor imaging (DTI) in eight healthy subjects (5 M) to track pathways in the horizontal mid-portion of the AF (hAF) to subregions of Broca's area - pars triangularis (PTr) and pars opercularis (POp); and to ventral premotor cortex (vPMC) in the right and left hemispheres (RH, LH). These pathways have previously been studied in the LH, but not in the RH.
View Article and Find Full Text PDFObjective: To present pretreatment and post-treatment language data for a nonfluent aphasia patient who received 2 treatment modalities: (1) continuous positive airway pressure (CPAP) for his sleep apnea, starting 1-year poststroke; and (2) repetitive transcranial magnetic brain stimulation (TMS), starting 2 years poststroke.
Background: Language data were acquired beyond the spontaneous recovery period of 3 to 6 months poststroke onset. CPAP restores adequate oxygen flow throughout all stages of sleep, and may improve cognition.
Curr Neurol Neurosci Rep
November 2009
Repetitive transcranial magnetic stimulation (rTMS) has been used to improve language behavior, including naming, in stroke patients with chronic, nonfluent aphasia. Part 1 of this article reviews functional imaging studies related to language recovery in aphasia. Part 2 reviews the rationale for using rTMS to treat nonfluent aphasia (based on functional imaging) and presents our current rTMS protocol.
View Article and Find Full Text PDFTwo chronic, nonfluent aphasia patients participated in overt naming fMRI scans, pre- and post-a series of repetitive transcranial magnetic stimulation (rTMS) treatments as part of a TMS study to improve naming. Each patient received 10, 1-Hz rTMS treatments to suppress a part of R pars triangularis. P1 was a 'good responder' with improved naming and phrase length; P2 was a 'poor responder' without improved naming.
View Article and Find Full Text PDFThe purpose of this study was to develop a functional MRI method to examine overt speech in stroke patients with aphasia. An fMRI block design for overt picture naming was utilized which took advantage of the hemodynamic response delay where increased blood flow remains for 4-8 s after the task [(Friston, K.J.
View Article and Find Full Text PDFWe report improved ability to name pictures at 2 and 8 months after repetitive transcranial magnetic stimulation (rTMS) treatments to the pars triangularis portion of right Broca's homologue in a 57 year-old woman with severe nonfluent/global aphasia (6.5 years post left basal ganglia bleed, subcortical lesion). TMS was applied at 1 Hz, 20 minutes a day, 10 days, over a two-week period.
View Article and Find Full Text PDFFunctional imaging studies with nonfluent aphasia patients have observed "over-activation" in right (R) language homologues. This may represent a maladaptive strategy; suppression may result in language improvement. We applied slow, 1 Hz repetitive transcranial magnetic stimulation (rTMS) to an anterior portion of R Broca's homologue daily, for 10 days in four aphasia patients who were 5-11 years poststroke.
View Article and Find Full Text PDFCortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery.
View Article and Find Full Text PDFFunctional brain imaging with nonfluent aphasia patients has shown increased cortical activation (perhaps "overactivation") in right (R) hemisphere language homologues. These areas of overactivation may represent a maladaptive strategy that interferes with, rather than promotes, aphasia recovery. Repetitive transcranial magnetic stimulation (rTMS) is a painless, noninvasive procedure that utilizes magnetic fields to create electric currents in discrete brain areas affecting about a 1-cm square area of cortex.
View Article and Find Full Text PDFThis study examined activation levels in the left (L) supplementary motor area (SMA) and the right (R) SMA (separately), and activation in nine R perisylvian language homologues during overt, propositional speech in chronic nonfluent aphasia patients. Previous functional imaging studies with a variety of chronic aphasia patients have reported activation in these regions during different language tasks, however, overt propositional speech has not been examined. In the present research, four nonfluent aphasia patients were studied during overt elicited propositional speech at 4-9 years post-single L hemisphere stroke, which spared the SMA.
View Article and Find Full Text PDF