Publications by authors named "Paula Horny"

Quantitative X-ray microanalysis of thick samples is usually performed by measuring the characteristic X-ray intensities of each element in a sample and in corresponding standards. The ratio of the measured intensities from the unknown material to that from the standard is related to the concentration using the ZAF or ϕ(ρz) equations. Under optimal conditions, accuracies approaching 1% are possible.

View Article and Find Full Text PDF

Fluoropolymer plasma coatings have been investigated for application as stent coatings due to their chemical stability, conformability, and hydrophobic properties. The challenge resides in the capacity for these coatings to remain adherent, stable, and cohesive after the in vivo stent expansion, which can generate local plastic deformation of up to 25%. Plasma-coated samples have been prepared by a multistep process on 316L stainless steel substrates, and some coated samples were plastically deformed to mimic a stent expansion.

View Article and Find Full Text PDF

A new Monte Carlo program, Win X-ray, is presented that predicts X-ray spectra measured with an energy dispersive spectrometer (EDS) attached to a scanning electron microscope (SEM) operating between 10 and 40 keV. All the underlying equations of the Monte Carlo simulation model are included. By simulating X-ray spectra, it is possible to establish the optimum conditions to perform a specific analysis as well as establish detection limits or explore possible peak overlaps.

View Article and Find Full Text PDF