Publications by authors named "Paula Hammond"

We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties.

View Article and Find Full Text PDF

Nanoparticles have the potential to improve disease treatment and diagnosis due to their ability to incorporate drugs, alter pharmacokinetics, and enable tissue targeting. While considerable effort is placed on developing spherical lipid-based nanocarriers, recent evidence suggests that high aspect ratio lipid nanocarriers can exhibit enhanced disease site targeting and altered cellular interactions. However, the assembly of lipid-based nanoparticles into non-spherical morphologies has typically required incorporating additional agents such as synthetic polymers, proteins, lipid-polymer conjugates, or detergents.

View Article and Find Full Text PDF

We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties.

View Article and Find Full Text PDF
Article Synopsis
  • - Liposomes enhance drug pharmacokinetics by effectively encapsulating drugs and targeting specific tissues, yet existing methods face challenges in producing consistently sized lipid vesicles for clinical use.
  • - A new surfactant-assisted assembly method allows for the precise creation of monodisperse liposomes ranging from 50 nm to 1 μm, using tangential flow filtration to efficiently remove over 99.9% of detergent and purify the samples.
  • - The study introduces two modes of liposome self-assembly, explaining how phase separation and detergent partitioning affect vesicle size, and demonstrates a direct relationship between liposome size and uptake in macrophages, showcasing its potential for targeted drug delivery.
View Article and Find Full Text PDF

Drug-carrying nanoparticles are a promising strategy to deliver therapeutics into the brain, but their translation requires better characterization of interactions between nanomaterials and endothelial cells of the blood-brain barrier (BBB). Here, we use a library of 18 layer-by-layer electrostatically assembled nanoparticles (NPs) to independently assess the impact of NP core and surface materials on in vitro uptake, transport, and intracellular trafficking in brain endothelial cells. We demonstrate that NP core stiffness determines the magnitude of transport, while surface chemistry directs intracellular trafficking.

View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapies like checkpoint inhibitors have shown limited efficacy in treating metastatic ovarian cancer (OC), prompting research into more effective methods.* -
  • Researchers created liposomal nanoparticles (NPs) coated with a polymer designed to help them bind to OC cells and release interleukin-12 (IL-12) in tumors after being administered into the abdomen.* -
  • These engineered IL-12 nanoparticles significantly improved T cell accumulation in tumors, enhanced survival in mouse models, and made tumors more responsive to checkpoint inhibitors, potentially leading to lasting immune protection.*
View Article and Find Full Text PDF
Article Synopsis
  • Noncompressible truncal hemorrhage is a significant cause of preventable deaths outside of hospital settings, necessitating reliable animal models to test new treatments.
  • This study created a lethal injury model using Yorkshire swine, combining severe liver damage with controlled blood volume loss, resulting in rapid and consistent outcomes.
  • The developed model consistently led to high mortality rates within a short timeframe, making it a valuable tool for evaluating interventions for severe abdominal bleeding.
View Article and Find Full Text PDF

Improving the clinical translation of nanomedicine requires better knowledge about how nanoparticles interact with biological environments. As researchers are recognizing the importance of understanding the protein corona and characterizing how nanocarriers respond in biological systems, new tools and techniques are needed to analyze nanocarrier-protein interactions, especially for smaller size (<10 nm) nanoparticles like polyamidoamine (PAMAM) dendrimers. Here, we developed a streamlined, semiquantitative approach to assess dendrimer-protein interactions using a nondenaturing electrophoresis technique combined with mass spectrometry.

View Article and Find Full Text PDF

Immune stimulating complexes (ISCOMs) are safe and effective saponin-based adjuvants formed by the self-assembly of saponin, cholesterol, and phospholipids in water to form cage-like 30-40 nm diameter particles. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) in ISCOM particles yields a promising next-generation adjuvant termed Saponin-MPLA NanoParticles (SMNP). In this work, we detail protocols to produce ISCOMs or SMNP via a tangential flow filtration (TFF) process suitable for scalable synthesis and Good Manufacturing Practice (GMP) production of clinical-grade adjuvants.

View Article and Find Full Text PDF

Localized short interfering RNA (siRNA) therapy has the potential to drive high-specificity molecular-level treatment of a variety of disease states. Unfortunately, effective siRNA therapy suffers from several barriers to its intracellular delivery. Thus, drug delivery systems that package and control the release of therapeutic siRNAs are necessary to overcome these obstacles to clinical translation.

View Article and Find Full Text PDF

Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity.

View Article and Find Full Text PDF

biofilms comprise three main polysaccharides: alginate, psl, and pel, which all imbue tolerance against exogenous antimicrobials. Nanoparticles (NPs) are an exciting new strategy to overcome the biofilm matrix for therapeutic delivery applications; however, zero existing FDA approvals for biofilm-specific NP formulations can be attributed to the complex interplay of physiochemical forces at the biofilm-NP interface. Here, we leverage a set of inducible, polysaccharide-specific, expressing isogenic mutants coupled with an assembled layer-by-layer NP (LbL NP) panel to characterize biofilm-NP interactions.

View Article and Find Full Text PDF

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are exploring new ways to use genetic treatments, specifically through tiny particles called lipid nanoparticles (LNPs) that can deliver medicine to cells.
  • A big problem is that these nanoparticles often end up in the liver instead of going to the right place in the body.
  • Researchers found a method to change the surface of LNPs, making them better at delivering their genetic cargo to specific cells by using different materials that help them target the right places in the body.
View Article and Find Full Text PDF

Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching.

View Article and Find Full Text PDF

Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Currently there are no therapeutic RNAs approved for use in DFUs.

View Article and Find Full Text PDF

Glioblastoma is characterized by diffuse infiltration into surrounding healthy brain tissues, which makes it challenging to treat. Complete surgical resection is often impossible, and systemically delivered drugs cannot achieve adequate tumor exposure to prevent local recurrence. Convection-enhanced delivery (CED) offers a method for administering therapeutics directly into brain tumor tissue, but its impact has been limited by rapid clearance and off-target cellular uptake.

View Article and Find Full Text PDF
Article Synopsis
  • Frontline treatments for advanced ovarian cancer have seen little improvement in cure rates over many years.
  • The text emphasizes the need for a multidisciplinary strategy to explore new therapeutic options.
  • It highlights the importance of understanding minimal residual disease, which is the phase that contributes to recurring and eventually incurable ovarian cancer.
View Article and Find Full Text PDF

Microbes entrenched within biofilms can withstand 1000-fold higher concentrations of antibiotics, in part due to the viscous extracellular matrix that sequesters and attenuates antimicrobial activity. Nanoparticle (NP)-based therapeutics can aid in delivering higher local concentrations throughout biofilms as compared to free drugs alone, thereby enhancing the efficacy. Canonical design criteria dictate that positively charged nanoparticles can multivalently bind to anionic biofilm components and increase biofilm penetration.

View Article and Find Full Text PDF

Chronic non-healing wounds occur frequently in individuals affected by diabetes, yet standard-of-care treatment leaves many patients inadequately treated or with recurring wounds. MicroRNA (miR) expression is dysregulated in diabetic wounds and drives an anti-angiogenic phenotype, but miRs can be inhibited with short, chemically-modified RNA oligonucleotides (anti-miRs). Clinical translation of anti-miRs is hindered by delivery challenges such as rapid clearance and uptake by off-target cells, requiring repeated injections, excessively large doses, and bolus dosing mismatched to the dynamics of the wound healing process.

View Article and Find Full Text PDF

Cationic poly(amido amine) (PAMAM) dendrimers exhibit great potential for use in drug delivery, but their high charge density leads to an inherent cytotoxicity. To increase biocompatibility, many studies have attached poly(ethylene glycol) (PEG) chains to the dendrimer surface. It is unclear how these tethered PEG chains influence the physicochemical properties of the dendrimer.

View Article and Find Full Text PDF

Primary hemostasis (platelet plug formation) and secondary hemostasis (fibrin clot formation) are intertwined processes that occur upon vascular injury. Researchers have sought to target wounds by leveraging cues specific to these processes, such as using peptides that bind activated platelets or fibrin. While these materials have shown success in various injury models, they are commonly designed for the purpose of treating solely primary or secondary hemostasis.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8 T cell or NK cell-mediated cytotoxicity, while the role of CD4 T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported.

View Article and Find Full Text PDF

Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer-by-layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin-12 (IL-12) therapy upon intratumoral injection.

View Article and Find Full Text PDF