Publications by authors named "Paula Haddad"

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers synthesized SPIONS using iron salts, confirmed their characteristics with several analytical techniques, and conducted germination tests on seeds with different treatments.
  • * Results indicated that while germination rates were highest in the control group, the SPION group showed the best root growth and higher iron absorption in the plants, suggesting SPIONS are effective as nanofertilizers.
View Article and Find Full Text PDF

Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients.

View Article and Find Full Text PDF

Iron oxide magnetic nanoparticles have been employed as potential vehicles for a large number of biomedical applications, such as drug delivery. This article describes the synthesis, characterization and in vitro cytotoxic in COVID-19 cells evaluation of DMSA superparamagnetic iron oxide magnetic nanoparticles. Magnetite (FeO) nanoparticles were synthesized by co-precipitation of iron salts and coated with meso-2,3-dimercaptosuccinic acid (DMSA) molecule.

View Article and Find Full Text PDF

Currently, antimicrobial photodynamic therapy (APDT) is limited to the local treatment of topical infections, and a platform that can deliver the photosensitizer to internal organs is highly desirable for non-local ones; SPIONs can be promising vehicles for the photosensitizer. This work reports an innovative application of methylene blue (MB)-superparamagnetic iron oxide nanoparticles (SPIONs). We report on the preparation, characterization, and application of MB-SPIONs for antimicrobial photodynamic therapy.

View Article and Find Full Text PDF

This article describes the synthesis, characterization and in vivo cytotoxic evaluation of thiol-functionalized superparamagnetic iron oxide magnetic nanoparticles (SPIONs). They have been employed as potential vehicles for a large number of biomedical applications, such as drug delivery. FeO nanoparticles were synthesized by coprecipitation of iron salts and coated with L-cysteine.

View Article and Find Full Text PDF

Oil spill is a serious environmental concern, and alternatives to remove oils from water involving biosorbents associated to nanoparticles is an emerging subject. Magnetite nanoparticles (MNP) and yeast magnetic bionanocomposite (YB-MNP) composed by yeast biomass from the ethanol industry were produced, characterized, and tested to remove new motor oil (NMO), mixed used motor oil (MUMO) and Petroleum 28 °API (P28API) from water following the ASTM F726-12 method, which was adapted by insertion of a lyophilization step to ensure the accuracy of the gravimetric approach. Temperature, contact time, the type and the amount of the magnetic material were the parameters evaluated employing a fractional factorial design.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs), with appropriate surface coating, are commonly used for biomedical applications such as photodynamic therapy (PDT). This work describes the preparation and characterization of methylene blue (MB)-containing silica-coated SPIONs. Upon exposure to light, MB reacts with molecular oxygen and generates singlet oxygen (1O2) which is cytotoxic and causes irreversible damage to tumor tissues.

View Article and Find Full Text PDF

Recently, an increasing number of publications have demonstrated the importance of the small molecule nitric oxide (NO) in several physiological and pathophysiological processes. NO acts as a key modulator in cardiovascular, immunological, neurological, and respiratory systems, and deficiencies in the production of NO or its inactivation has been associated with several pathologic conditions, ranging from hypertension to sexual dysfunction. Although the clinical administration of NO is still a challenge owing to its transient chemical nature, the combination of NO and nanocarriers based on biocompatible polymeric scaffolds has emerged as an efficient approach to overcome the difficulties associated with the biomedical administration of NO.

View Article and Find Full Text PDF

Iron oxide magnetic nanoparticles have been proposed for an increasing number of biomedical applications, such as drug delivery. To this end, toxicological studies of their potent effects in biological media must be better evaluated. The aim of this study was to synthesize, characterize, and examine the potential in vitro cytotoxicity and genotoxicity of thiolated (SH) and S-nitrosated (S-NO) iron oxide superparamagnetic nanoparticles toward healthy and cancer cell lines.

View Article and Find Full Text PDF

'Green nanotechnology' has attracted increasing attention in recent years because of the possibility to reduce and/or eliminate toxic substances. Indeed, biogenic syntheses of nanomaterials, such as nanoparticles (NPs), are considered economic and valuable alternatives for the production of metallic NPs for diverse applications. Recent studies have revealed that the development of eco-friendly technologies in material science is under extensive investigation in the field of nanobiotechnology.

View Article and Find Full Text PDF

This work reports a new strategy for delivering nitric oxide (NO), based on magnetic nanoparticles (MNPs), with great potential for biomedical applications. Water-soluble magnetic nanoparticles were prepared through a co-precipitation method by using ferrous and ferric chlorides in acidic solution, followed by a mercaptosuccinic acid (MSA) coating. The thiolated nanoparticles (SH-NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM).

View Article and Find Full Text PDF

The relationship between crystallization and growth of colloidal iron oxide nanoparticles during isothermal annealing was addressed in this work. The structural, morphological and chemical modifications of the nanoparticles during thermal treatments were followed by combination of electron microscopy, X-ray diffraction and spectroscopic methods. The initially monodisperse spherical nanoparticles with amorphous and partially oxidized structure evolved during the treatments, depending on the temperature and treatment time.

View Article and Find Full Text PDF

Cell-adhesion events involve often the formation of a contact region between phospholipid membranes decorated with a variety of bio-macromolecular species. We mimic here such hairy bio-adhesive contact zones by spreading phospholipid vesicles onto surfaces carpeted with end-grafted λ-phage DNA. Our study reveals that the spreading front acts as a scraper that strongly stretches the DNA molecules, and that the multiple bonds created during vesicle spreading effectively staple the stretched chains in the gap between the membrane and the substrate.

View Article and Find Full Text PDF

We study the photodecomposition of phospholipid bilayers in aqueous solutions of methylene blue. Observation of giant unilamellar vesicles under an optical microscope reveals a consistent pattern of membrane disruption as a function of methylene blue concentration and photon density for different substrates supporting the vesicles.

View Article and Find Full Text PDF