Publications by authors named "Paula Grisafi"

Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation.

View Article and Find Full Text PDF

The cullin-4 (CUL4) complex DCDC (DIM-5/-7/-9/CUL4/DDB1 complex) is essential for DNA methylation and heterochromatin formation in Neurospora crassa. Cullins form the scaffold of cullin-RING E3 ubiquitin ligases (CRLs) and are modified by the covalent attachment of NEDD8, a ubiquitin-like protein that regulates the stability and activity of CRLs. We report that neddylation is not required for CUL4-dependent DNA methylation or heterochromatin formation but is required for the DNA repair functions.

View Article and Find Full Text PDF

Despite the known relevance of genomic structural variants to pathogen behavior, cancer, development, and evolution, certain repeat based structural variants may evade detection by existing high-throughput techniques. Here, we present ruler arrays, a technique to detect genomic structural variants including insertions and deletions (indels), duplications, and translocations. A ruler array exploits DNA polymerase's processivity to detect physical distances between defined genomic sequences regardless of the intervening sequence.

View Article and Find Full Text PDF

Mechanisms through which long intergenic noncoding RNAs (ncRNAs) exert regulatory effects on eukaryotic biological processes remain largely elusive. Most studies of these phenomena rely on methods that measure average behaviors in cell populations, lacking resolution to observe the effects of ncRNA transcription on gene expression in a single cell. Here, we combine quantitative single-molecule RNA FISH experiments with yeast genetics and computational modeling to gain mechanistic insights into the regulation of the Saccharomyces cerevisiae protein-coding gene FLO11 by two intergenic ncRNAs, ICR1 and PWR1.

View Article and Find Full Text PDF

STEREO is a novel algorithm that discovers cis-regulatory RNA interactions by assembling complete and potentially overlapping same-strand RNA transcripts from tiling expression data. STEREO first identifies coherent segments of transcription and then discovers individual transcripts that are consistent with the observed segments given intensity and shape constraints. We used STEREO to identify 1446 regions of overlapping transcription in two strains of yeast, including transcripts that comprise a new form of molecular toggle switch that controls gene variegation.

View Article and Find Full Text PDF

The identification of specific functional roles for the numerous long noncoding (nc)RNAs found in eukaryotic transcriptomes is currently a matter of intense study amid speculation that these ncRNAs have key regulatory roles. We have identified a pair of cis-interfering ncRNAs in yeast that contribute to the control of variegated gene expression at the FLO11 locus by implementing a regulatory circuit that toggles between two stable states. These capped, polyadenylated ncRNAs are transcribed across the large intergenic region upstream of the FLO11 ORF.

View Article and Find Full Text PDF

Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan.

View Article and Find Full Text PDF

Entry into meiosis is a key developmental decision. We show here that meiotic entry in Saccharomyces cerevisiae is controlled by antisense-mediated regulation of IME4, a gene required for initiating meiosis. In MAT a/alpha diploids the antisense IME4 transcript is repressed by binding of the a1/alpha2 heterodimer at a conserved site located downstream of the IME4 coding sequence.

View Article and Find Full Text PDF

Copines are calcium-dependent membrane-binding proteins that are highly conserved among protozoa, plants, nematodes and mammals. Although they are implicated in membrane trafficking and signal transduction, the functions of these proteins are not well understood. The Arabidopsis copine gene BON1/CPN1 was previously shown to negatively regulate a disease resistance (R) gene SNC1.

View Article and Find Full Text PDF

Fungi must recognize plant-specific signals to initiate subsequent morphogenetic events such as filamentation that lead to infection. Here we show that the plant hormone indoleacetic acid (IAA) induces adhesion and filamentation of Saccharomyces cerevisiae. Genome expression profiling of cells treated with IAA identified Yap1, a fungal specific transcription factor, as a key mediator of this response.

View Article and Find Full Text PDF

Lateral root formation, the primary way plants increase their root mass, displays developmental plasticity in response to environmental changes. The aberrant lateral root formation (alf)4-1 mutation blocks the initiation of lateral roots, thus greatly altering root system architecture. We have positionally cloned the ALF4 gene and have further characterized its phenotype.

View Article and Find Full Text PDF

The transcriptional profiles of yeast cells that have been phagocytosed by either human neutrophils or monocytes were compared by using whole genome arrays. After phagocytosis by neutrophils, both Saccharomyces cerevisiae and Candida albicans respond by inducing genes of the methionine and arginine pathways. Neither of these pathways is induced upon phagocytosis by monocytes.

View Article and Find Full Text PDF