The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings).
View Article and Find Full Text PDFIn CSTRs, ferrous iron was biologically oxidized followed by crystallization of scorodite (FeAsO(4)·2H(2)O) at pH 1.2 and 72 °C. The CSTRs were fed with 2.
View Article and Find Full Text PDFThe extreme acid conditions required for scorodite (FeAsO₄·2H₂O) biomineralization (pH below 1.3) are suboptimal for growth of most thermoacidophilic Archaea. With the objective to develop a continuous process suitable for biomineral production, this research focuses on growth kinetics of thermoacidophilic Archaea at low pH conditions.
View Article and Find Full Text PDFScorodite is an arsenic mineral with the chemical formula FeAsO(4)*2H(2)O. It is the most common natural arsenate associated with arsenic-bearing ore deposits. In the present study we show that the thermoacidophilic iron-oxidizing archaeon Acidianus sulfidivorans is able to precipitate scorodite in the absence of any primary minerals or seed crystals, when grown on 0.
View Article and Find Full Text PDF