Clin Child Psychol Psychiatry
January 2025
Background: Online self-assessments are becoming more popular. They can serve as a screening tool for specific conditions or assess mental health more broadly but often lack in depth evaluation.
Methods: This study presents preliminary data from an online self-assessment tool for young people within the age range of 12-30 years (Link: redcap.
The nitrogen stable isotope composition (δN) of plant materials has numerous applications. Plant materials like bark can have a very high C:N ratio. Incomplete C combustion in such samples interferes with the δN measurement due to CO production.
View Article and Find Full Text PDFAbnormalities in auditory processing are believed to play a major role in autism and attention-deficit hyperactivity disorder (ADHD). Both conditions often co-occur in children, causing difficulties in deciding the most promising intervention. Event-related potentials (ERPs) have been investigated and are showing promise to act as potential biomarkers for both conditions.
View Article and Find Full Text PDFRecently, we have proposed the SAFT-VR Mie MF DFT approach [Algaba , , 2019, , 11937-11948] to investigate systems that exhibit fluid-fluid interfaces. This formalism is based on the combination of the Statistical Associating Fluid Theory for attractive potentials of variable range using Mie intermolecular potential (SAFT-VR Mie) and a Density Functional Theory (DFT) treatment of the free energy. A mean-field approach is used to evaluate the attractive term, neglecting the pair correlations associated to attractions.
View Article and Find Full Text PDFIn this work, the liquid-liquid interfacial properties of methanol plus n-alkane (n-hexane, n-heptane, n-octane) mixtures are investigated at atmospheric pressure by two complementary molecular modelling techniques; namely, molecular dynamic simulations (MD) and density gradient theory (DGT) coupled with the PC-SAFT (perturbed-chain statistical associating fluid theory) equation of state. Furthermore, two molecular models of methanol are used, which are based on a non-polarisable three site approach. On the one hand, is the original (flexible) TraPPE-UA model force field.
View Article and Find Full Text PDFLiterature studies on interfacial tension versus temperature between normal alcohols and water show that it increases with temperature and exhibits a maximum value at a given temperature depending on the molecular weight of the alcohol. This very unusual behavior is supposedly accompanied by the formation of monolayers of alcohol molecules oriented preferentially at the interface, a structural issue not confirmed until now. We use molecular-based models for water and alcohols in combination with molecular dynamics simulations to provide physical insights, from a molecular perspective, into the structural and thermodynamic behavior at the liquid-liquid interfaces of aqueous solutions of alcohols.
View Article and Find Full Text PDFWe have determined the phase equilibria and interfacial properties of a methyl ester homologous series (from methyl acetate to methyl heptanoate) using direct simulations of the vapour-liquid interfaces. The methyl esters are modelled using the united atom approach in combination with transferable parameters for phase equilibria (TraPPE) force fields for alkanes, alkenes, carbon dioxide, ethers, and carboxylic acids in a transferable way. This allows us to take into account explicitly both dispersive and coulombic interactions, as well as the repulsive Pauli-exclusion interactions.
View Article and Find Full Text PDFThe behavior of water, methanol, and water-methanol mixtures confined in narrow slit graphite pores as a function of pore size was investigated by Monte Carlo, hybrid Monte Carlo, and Molecular Dynamics simulations. Interactions were described using TIP4P/2005 for water, OPLS/2016 for methanol, and cross interactions fitted to excess water/methanol properties over the whole range of concentrations, which provide a rather accurate description of water-methanol mixtures. As expected for hydrophobic pores, whereas pure methanol is adsorbed already from the gas phase, pure water only enters the pore at pressures well beyond bulk saturation for all pore sizes considered.
View Article and Find Full Text PDFIn this paper, we present a comparative study of the adsorption behavior of short chain alcohols (pure and in aqueous solution) into silicalite-1 (MFI-type zeolite) and silicalite-2 (MEL-type zeolite). For quite some time, silicalite-1 has been the reference material to address the problem of adsorptive-based separation, mostly for hydrocarbon mixtures. Interestingly, being structurally close to silicalite-1, adsorption studies using silicalite-2 are scarce and to the best of our knowledge, a comparative study of their behavior for alcohol-water mixtures has not been published to date.
View Article and Find Full Text PDFThe large-scale isolation of specific isomers of amyl alcohols for applications in the chemical, pharmaceutical, and biochemical industries represents a challenging task due to the physicochemical similarities of these structural isomers. The homochiral metal-organic framework cadmium-BINOL (BINOL=1,1'-bi-2-naphthol) is suitable for the separation of pentanol isomers, combining adsorption selectivities above 5 with adsorption capacities of around 4.5 mol kg .
View Article and Find Full Text PDFThe separation of carbon dioxide from flue gas is essential for the reduction of greenhouse gas emissions. In adsorptive methods, the challenge lies in the choice of suitable porous materials. Among all zeolite topologies, a number of adsorbents with pore dimensions in the range of the guest molecules were identified to allow an excellent separation by diffusion, and MRE and AFO zeolite topologies appear to be the best candidates based on equilibrium adsorption.
View Article and Find Full Text PDFAqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding.
View Article and Find Full Text PDFTo find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families.
View Article and Find Full Text PDFThis study reveals the efficient enantiomeric separation of bioactive molecules in the liquid phase. Chiral structure HMOF-1 separates racemic mixtures whereas heteroselectivity is observed for scalemic mixtures of ibuprofen using non-chiral MIL-47 and MIL-53. Lysine enantiomers are only separated by HMOF-1.
View Article and Find Full Text PDFMixtures containing associated substances show a singular thermodynamic behaviour that has attracted to scientific community during the last century. Particularly, binary systems composed of an associating fluid and an inert solvent, where association occurs only between molecules of the same kind, have been extensively studied. A number of theoretical approaches were used in order to gain insights into the effect of the association on the macroscopic behaviour, especially on the second-order thermodynamic derivatives (or response functions).
View Article and Find Full Text PDFIn this work, the clusters residing in the {methanol + inert solvent} binary system have been characterized using a specific methodology in the framework of Monte Carlo molecular simulations. The cluster classification scheme considered distinguishes into five types: linear chains, cyclic clusters or isolated rings, branched linear chains, branched cyclic clusters, and composite rings. The procedure allows one to compute the next rich structural information: the fraction of molecules in the monomer or associated state, the fraction of each type of aggregate with a given size (and of molecules belonging to them), and the most probable and average cluster size for each type; likewise, the degree of branching in branched linear chains and the size distribution of the inner ring in branched cyclic clusters can be quantified.
View Article and Find Full Text PDFA methodology for the determination of the oligomers residing in a pure associated fluid was developed in the framework of the molecular simulation technique. First, the number of hydrogen bonds between each pair of molecules of the fluid is computed by using a specific criterion to define the hydrogen bonding formation. Secondly, sets of molecules linked by hydrogen bonds are identified and classified as linear chains, cyclic aggregates, branched linear chains, branched cyclic aggregates, and the rest of clustering.
View Article and Find Full Text PDF