The long-lasting post-surgical changes in nociceptive thresholds in mice, indicative of latent pain sensitization, were studied. The contribution of kappa opioid and N-methyl-d-aspartate (NMDA) receptors was assessed by the administration of nor-binaltorphimine or MK-801; dynorphin levels in the spinal cord were also determined. Animals underwent a plantar incision and/or a subcutaneous infusion of remifentanil (80μg/kg), and mechanical thresholds (von Frey) were evaluated at different times.
View Article and Find Full Text PDFIn humans, remifentanil anesthesia enhances nociceptive sensitization in the postoperative period. We hypothesized that activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the expression of c-Fos, prodynorphin (mRNA), and dynorphin in the spinal cord could participate in the molecular mechanisms underlying postoperative opioid-induced sensitization. In a mouse model of incisional pain, we evaluated thermal (Hargreaves test) and mechanical (von Frey) hyperalgesia during the first 21 postoperative days.
View Article and Find Full Text PDFThe implication of inducible nitric-oxide synthase (iNOS) on peripheral tolerance to morphine was evaluated in wild-type (WT) and iNOS knockout mice. Chronic inflammation was induced by subplantar (s.p.
View Article and Find Full Text PDFThe ultra-short-acting mu-opioid receptor (MOR) agonist remifentanil enhances postsurgical pain when used as main anesthetic in animal models and man. Although the mechanism/s involved are poorly characterized, changes in opioid receptor expression could be a relevant feature. Using a mouse model of postoperative pain, we assessed the expression of MOR and delta opioid receptors (DORs) and the efficacy of Herpes Simplex vector-mediated proenkephalin release (SHPE) preventing postoperative nociceptive sensitization induced by remifentanil or surgical incision.
View Article and Find Full Text PDFTolerance to peripheral antinociception after chronic exposure to systemic morphine was assessed in mice with chronic CFA-inflammation; cross-tolerance to locally administered mu, delta and kappa-opioid agonists and levels of beta-arrestins in the injured paw, were also evaluated. Tolerance was induced by the subcutaneous implantation of a 75 mg morphine-pellet, and antinociception evaluated with the Randall-Selitto test, 5 min after the subplantar injection of morphine, fentanyl, buprenorphine, DPDPE, U-50488H or CRF. Experiments were performed in the absence and presence of CFA-inflammation, in animals implanted with a morphine or placebo pellet.
View Article and Find Full Text PDFOpioids are used in humans in the treatment of chronic osteoarticular pain, but the development of tolerance to the analgesic effects after continuous administration is still not well understood. The aim of the present study was to evaluate the expression of phospho-ERK 1/2 and phospho-p38 in mice with monoarthritis chronically exposed to morphine as a possible explanation for the development of tolerance. Inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA) and the tolerance by implantation of 75 mg morphine pellets.
View Article and Find Full Text PDFOpioids are used in humans in the management of chronic osteoarticular pains, but the development of tolerance to the analgesic effects after continuous administration is still not well understood. Our aim was to characterize morphine tolerance in a murine model of arthritis that mimics the sequence of events occurring in humans. Inflammation was induced by the intraplantar injection of complete Freund's adjuvant (CFA) and tolerance by the implantation of a 75-mg morphine pellet.
View Article and Find Full Text PDFThere is an increasing body of evidence demonstrating that inhibition of cytochrome c oxidase by nitric oxide (NO) may be one more step in a signaling cascade involved in the physiologic regulation of cell functions. For example, in both astrocytes and neurons the inhibition of mitochondrial respiration by endogenously produced NO induces transient and modest decreases in cellular ATP concentrations. This mitochondrial impairment may serve as a cellular sensor of energy charges, hence modulating metabolic pathways, such as glycolysis, through AMP-activated protein kinase (AMPK) in astrocytes.
View Article and Find Full Text PDFFollowing brain inflammatory stimuli, astrocytes actively synthesize nitric oxide and peroxynitrite. These nitrogen-derived species trigger a repertoire of biochemical effects, including alteration of mitochondrial function and redox status both in astrocytes and neighboring neurons. Furthermore, under such nitrosative stress astrocytes show remarkable resistance in spite of having their mitochondria impaired, whereas the neighboring neurons show vulnerability.
View Article and Find Full Text PDFPeroxynitrite, the product of the reaction between nitric oxide and superoxide, is spontaneouly formed within most mammalian cells under physiological conditions. Initial work addressing the pathophysiology of peroxynitrite afforded the generally accepted notion that this compound would be the long-term neurotoxic nitric oxide-derivative. However, over the past six years a number of interesting studies have reported direct in vivo and in vitro evidence that, at nanomolar-low micromolar concentrations, peroxynitrite is actively involved in triggering cellular survival signals.
View Article and Find Full Text PDFPeroxynitrite is thought to be a nitric oxide-derived neurotoxic effector molecule involved in the disruption of key energy-related metabolic targets. To assess the consequences of such interference in cellular glucose metabolism and viability, we studied the possible modulatory role played by peroxynitrite in glucose oxidation in neurons and astrocytes in primary culture. Here, we report that peroxynitrite triggered rapid stimulation of pentose phosphate pathway (PPP) activity and the accumulation of NADPH, an essential cofactor for glutathione regeneration.
View Article and Find Full Text PDF