Aims: Amyloid precursor protein (APP) đť›˝-C-terminal fragment (đť›˝CTF) may have a neurotoxic role in Alzheimer's disease (AD). đť›˝CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD.
View Article and Find Full Text PDFThe most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have been highly informative in discovering disease-associated loci but are not designed to capture all structural variations in the human genome. Using long-read sequencing data, we discovered widespread structural variation within SINE-VNTR- (SVA) elements, a class of great ape-specific transposable elements with gene-regulatory roles, which represents a major source of structural variability in the human population. We highlight the presence of structurally variable SVAs (SV-SVAs) in neurological disease-associated loci, and we further associate SV-SVAs to disease-associated SNPs and differential gene expression using luciferase assays and expression quantitative trait loci data.
View Article and Find Full Text PDFWe report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aβ compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aβ accumulation and neuritic derangement in AD.
View Article and Find Full Text PDFPurpose Of The Review: The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases.
Recent Findings: Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions.