Publications by authors named "Paula Fernandez-Guerra"

Article Synopsis
  • HSP60 is a crucial mitochondrial chaperone that helps maintain cellular function, and its dysregulation is linked to conditions like cancer and diabetes, as well as neurodevelopmental issues in patients with certain gene variants.
  • Two model systems—engineered HEK cells and zebrafish knockout larvae—were used to investigate the impact of HSP60 deficiency, employing techniques like RNASeq, proteomics, and metabolomics analysis.
  • Findings reveal that HSP60 deficiency results in a downregulated mitochondrial proteome, triggers stress responses, and disrupts cholesterol biosynthesis, leading to lipid buildup in the knockout larvae and explaining myelination issues in affected patients.
View Article and Find Full Text PDF

Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment.

View Article and Find Full Text PDF

Objective: Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects.

View Article and Find Full Text PDF

Bromodomain containing 1 (BRD1) encodes an epigenetic regulator that controls the expression of genetic networks linked to mental illness. BRD1 is essential for normal brain development and its role in psychopathology has been demonstrated in genetic and preclinical studies. However, the neurobiology that bridges its molecular and neuropathological effects remains poorly explored.

View Article and Find Full Text PDF

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous, debilitating, and complex disease. Along with disabling fatigue, ME/CFS presents an array of other core symptoms, including autonomic nervous system (ANS) dysfunction, sustained inflammation, altered energy metabolism, and mitochondrial dysfunction. Here, we evaluated patients' symptomatology and the mitochondrial metabolic parameters in peripheral blood mononuclear cells (PBMCs) and plasma from a clinically well-characterised cohort of six ME/CFS patients compared to age- and gender-matched controls.

View Article and Find Full Text PDF

Standardization of the use of next-generation sequencing for the diagnosis of rare neurological disorders has made it possible to detect potential disease-causing genetic variations, including de novo variants. However, the lack of a clear pathogenic relevance of gene variants poses a critical limitation for translating this genetic information into clinical practice, increasing the necessity to perform functional assays. Genetic screening is currently recommended in the guidelines for diagnosis of hypomyelinating leukodystrophies (HLDs).

View Article and Find Full Text PDF

Background: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is the most frequent fatty acid oxidation (FAO) defect in humans. MCAD-deficient fibroblasts are more resistant to oxidative stress-induced cell death than other FAO defects and healthy controls.

Methods: Herein we investigate the antioxidant response and mitochondrial function in fibroblasts from MCAD-deficient patients (c.

View Article and Find Full Text PDF

In this review, we discuss the myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), which is characterised by extreme mental and physical fatigue with associated symptoms of pain, disturbed sleep, cognitive and autonomic dysfunction, as well as post-exertional malaise. This con-dition is often preceded by an infection, severe physiological and/or psychological strain. Over the last decades, research has demonstrated mitochondrial, neuroendocrine, immuno-logical, and metabolic perturbations in patients with ME/CFS, giving hope for the development of new biomarkers and new treatment modalities.

View Article and Find Full Text PDF

The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells.

View Article and Find Full Text PDF

Besides providing the majority of ATP production in cells, mitochondria are also involved in many other cellular functions and are central for cellular stress signaling. Mitochondrial dysfunction induces not only inherited mitochondrial disorders but also contributes to neurodegenerative diseases, cancer, diabetes, and metabolic syndrome. The HSP60/HSP10 molecular chaperone complex facilitates folding of mitochondrial proteins and is thus an important factor for many mitochondrial functions.

View Article and Find Full Text PDF

The natural product family of macrocyclic lipodepsipeptides containing the 4-amido-2,4-pentadienoate functionality possesses intriguing cytotoxic selectivity toward hypoxic cancer cells. These subpopulations of cancer cells display increased metastatic potential and resistance to chemo- and radiotherapy. In this paper, we present studies on the mechanism of action of these natural products in hypoxic cancer cells and show that this involves rapid and hypoxia-selective collapse of mitochondrial integrity and function.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates whether brown adipose tissue (BAT) is a target for metformin by examining how well mice uptake a [C]-metformin tracer and the effects of metformin on human brown adipocytes.
  • - PET/CT imaging in mice showed strong uptake of [C]-metformin in BAT, comparable to the liver, and this uptake was mediated by organic cation transporters (OCTs).
  • - The findings suggest that BAT could be a significant target for metformin, as treatment led to reduced oxygen consumption in human brown adipocytes in a dose-dependent manner.
View Article and Find Full Text PDF

Nuclear reprogramming efficiency has been shown to be highly variable among different types of somatic cells and different individuals, yet the underlying mechanism remains largely unknown. Several studies have shown that reprogramming of fibroblasts into induced pluripotent stem cells (iPSCs) requires remodeling of mitochondria and a metabolic shift from an oxidative state to a more glycolytic state. In this study, we evaluated the nuclear reprogramming efficiency in relation to mitochondrial bioenergetic parameters of fibroblasts from seven different human individuals.

View Article and Find Full Text PDF

We here report molecular investigations of a missense mutation in the gene encoding the HSP10 subunit of the HSP60/ HSP10 chaperonin complex that assists protein folding in the mitochondrial matrix. The mutation was identified in an infant who came to clinical attention due to infantile spasms at 3 months of age. Clinical exome sequencing revealed heterozygosity for a NM_002157.

View Article and Find Full Text PDF

Heat shock protein 60 (HSP60) forms together with heat shock protein 10 (HSP10) double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missense mutations in the HSPD1 gene that encodes the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the molecular mechanisms underlying these disorders have revealed that different degrees of reduced HSP60 function produce distinct neurological phenotypes.

View Article and Find Full Text PDF

Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurements of crucial cellular and mitochondrial parameters: (1) cell number and viability, (2) thiol redox status (TRS), (3) mitochondrial membrane potential (MMP) and (4) mitochondrial superoxide levels (MSLs). With our protocol, cell viability, TRS and MMP can be measured in one small cell sample and MSL on a parallel one.

View Article and Find Full Text PDF

Selected reaction monitoring (SRM) mass spectrometry can quantitatively measure proteins by specific targeting of peptide sequences, and allows the determination of multiple proteins in one single analysis. Here, we show the feasibility of simultaneous measurements of multiple proteins in mitochondria-enriched samples from cultured fibroblasts from healthy individuals and patients with mutations in branched-chain α-ketoacid dehydrogenase (BCKDH) complex. BCKDH is a mitochondrial multienzyme complex and its defective activity causes maple syrup urine disease (MSUD), a rare but severe inherited metabolic disorder.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) is essential for the energy production of the cells and as an electron transporter in the mitochondrial respiratory chain. CoQ10 links the mitochondrial fatty acid β-oxidation to the respiratory chain by accepting electrons from electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Recently, it was shown that a group of patients with the riboflavin responsive form of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) carrying inherited amino acid variations in ETF-QO also had secondary CoQ10 deficiency with beneficial effects of CoQ10 treatment, thus adding RR-MADD to an increasing number of diseases involving secondary CoQ10 deficiency.

View Article and Find Full Text PDF

Mutations in any of the three different genes--BCKDHA, BCKDHB, and DBT--encoding for the E1α, E1β, and E2 catalytic components of the branched-chain α-ketoacid dehydrogenase complex can cause maple syrup urine disease (MSUD). Disease severity ranges from the classic to the mildest variant types and precise genotypes, mostly based on missense mutations, have been associated to the less severe presentations of the disease. Herein, we examine the consequences at the messenger RNA (mRNA) level of the novel intronic alteration c.

View Article and Find Full Text PDF