Background: Artisanal cheeses usually contain a highly diverse microbial community which can significantly impact their quality and safety. Here, we describe a detailed longitudinal study assessing the impact of ripening in three natural caves on the microbiome and resistome succession across three different producers of Cabrales blue-veined cheese.
Results: Both the producer and cave in which cheeses were ripened significantly influenced the cheese microbiome.
Multitarget ligands (MTLs) have emerged as an interesting alternative for addressing complex multifactorial pathologies such as neurodegenerative diseases. However, a common challenge associated with these compounds is often their high molecular weight and low solubility, which becomes a hurdle when trying to permeate over the blood-brain barrier (BBB). In this study, we have designed two new MTLs that modulate three pharmacological targets simultaneously (tau, beta-amyloid and TAR DNA-binding protein 43).
View Article and Find Full Text PDFThe new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases.
View Article and Find Full Text PDFGlycogen synthase kinase 3β (GSK-3β) is a serine/threonine kinase and an attractive therapeutic target for Alzheimer's disease. Based on proteolysis-targeting chimera (PROTAC) technology, a small set of novel GSK-3β degraders was designed and synthesized by linking two different GSK-3β inhibitors, SB-216763 and tideglusib, to pomalidomide, as E3 recruiting element, through linkers of different lengths. Compound emerged as the most effective PROTAC being nontoxic up to 20 μM to neuronal cells and already able to degrade GSK-3β starting from 0.
View Article and Find Full Text PDFPlasma-Activated Water (PAW) was generated from tap water using a surface dielectric barrier discharge at different discharge power (26 and 36 W) and activation time (5 and 30 min). The inactivation of a three-strain Listeria monocytogenes cocktail in planktonic and biofilm state was evaluated. PAW generated at 36 W-30 min showed the lowest pH and the highest hydrogen peroxide, nitrates, nitrites contents and effectiveness against cells on planktonic state, resulting in 4.
View Article and Find Full Text PDFInt J Food Microbiol
February 2023
The present study evaluates the anti-biofilm activity of a coating applied with an atmospheric-pressure plasma jet system on AISI 316 stainless steel (SS) against multispecies biofilms containing Listeria monocytogenes (using background microbiota from three different meat industries) using culture-dependent and culture-independent approaches. Also, the disinfection effectiveness and biofilm evolution after sanitization with two food industry biocides were assessed. The anti-biofilm activity of the coating against L.
View Article and Find Full Text PDFInnovation regarding food production and processing is required to meet the emerging challenges of ensuring worldwide food security and meeting consumer demands for high-quality, safe and nutritious food products. This review provides insights into the current state-of-the-art of the emerging applications of Plasma Activated Water (PAW) in the food industry. PAW antimicrobial properties, inactivation mechanisms and the critical factors determining the lethal effect, as well as the bases for other technological applications are discussed.
View Article and Find Full Text PDFBiofilm-mediated microbial persistence of pathogenic and spoilage bacteria is a serious problem in food industries. Due to the difficulty of removing mature biofilms, great efforts are being made to find new strategies to prevent bacterial adherence to surfaces, the first step for biofilm development. In this study, coatings of (3-aminopropyl)triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and acrylic acid (AA) were applied by Non-Equilibrium Atmospheric Plasma on stainless steel (SS) AISI 316, the SS most commonly used in food industry equipment.
View Article and Find Full Text PDFBiofilm formation on food-contact surfaces is a matter of major concern causing food safety and spoilage issues to this sector. The aim of this study was to assess the durability of the anti-biofilm capacity of a plasma-polymerized coating composed of a base coating of (3-aminopropyl)triethoxysilane (APTES) and a functional coating of acrylic acid (AcAc). Coated and uncoated AISI 316 stainless steel (SS) plates were subjected to five sanitization cycles with sodium hypochlorite (0.
View Article and Find Full Text PDFBackground: The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.
View Article and Find Full Text PDFThe biofilm formation ability of a collection of thirty-three Pseudomonas spp. isolates from food processing facilities was investigated in order to find biomarkers of strong biofilm production, a characteristic that can determine persistence in food processing environments. The strains were classified according to the colony pigmentation on solid media as green, brown or not pigmented.
View Article and Find Full Text PDFThe relationship between biofilm formation and RpoS status was assessed in nine field isolates of C. sakazakii. Their ability to form biofilms was studied in BHI and minimum media with different pH values and supplemented or not with the amino acids arginine, lysine and glutamic acid.
View Article and Find Full Text PDF