Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82-99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS.
View Article and Find Full Text PDFPolysaccharides have been used widely in many industries, from food technology and mining to cosmetics and biomedical applications. Over recent years there has been growing interest in the development of responsive polysaccharides with unique and switchable properties, particularly systems that display lower-critical solution temperatures (LCSTs). Therefore, in this study we aimed to investigate a novel strategy that would allow the conversion of non-responsive polysaccharides into thermoresponsive polysaccharides with tuneable LCSTs.
View Article and Find Full Text PDFRecently, the issues of land-based plastics and their associated challenges in the marine world have been widely publicised in the media and scientific literature. Thus far, despite these communications, there have been few reports that have focused on the issues that acute plastic waste generation and its poor management pose to human health and the global environment. Also, articles on ways to mitigate these issues particularly in sub-Saharan Africa have not been documented.
View Article and Find Full Text PDFPolyJet three-dimensional (3D) printing allows for the rapid manufacturing of 3D moulds for the fabrication of cross-linked poly(dimethylsiloxane) microwell arrays (PMAs). As this 3D printing technique has a resolution on the micrometer scale, the moulds exhibit a distinct surface roughness. In this study, the authors demonstrate by optical profilometry that the topography of the 3D printed moulds can be transferred to the PMAs and that this roughness induced cell adhesive properties to the material.
View Article and Find Full Text PDFThermoresponsive polymers have been used extensively for various applications including food additives, pharmaceutical formulations, therapeutic delivery, cosmetics and environmental remediation, to mention a few. Many thermoresponsive polymers have the ability to form physical hydrogel networks in response to temperature changes, which are particularly useful for emerging biomedical applications, including cell therapies, drug delivery systems, tissue engineering, wound healing and 3D bioprinting. In particular, the use of polysaccharides with thermoresponsive properties has been of interest due to their wide availability, versatile functionality, biodegradability, and in many cases, inherent biocompatibility.
View Article and Find Full Text PDFSurface-inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil-in-water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil-water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size.
View Article and Find Full Text PDFThe plasmonic behavior of metals at the nanoscale is not only appealing for fundamental studies, but also very useful for the development of innovative photonic devices. The past few decades have witnessed great progress in colloidal synthesis of monodisperse metal nanoparticles with defined shapes. This has significantly fueled up the research of directing the metal nanoparticles to self-assemble into tailored extended structures, especially low dimensional ones, for a better control and manipulation of the interactions of the metal nanoparticles with light.
View Article and Find Full Text PDF