Publications by authors named "Paula Doria-Borrell"

The placenta, a pivotal organ in mammalian reproduction, allows nutrient exchange and hormonal signaling between the mother and the developing fetus. Understanding its molecular intricacies is essential for deciphering normal embryonic development and pathological conditions such as tumorigenesis. Here, we explore the multifaceted role of the tumor suppressor BRCA1-associated protein 1 (BAP1) in cancer and placentation.

View Article and Find Full Text PDF

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth.

View Article and Find Full Text PDF

The placenta is the organ that dictates the reproductive outcome of mammalian pregnancy by supplying nutrients and oxygen to the developing fetus to sustain its normal growth. During early mammalian development, trophoblast cells are the earliest cell type to differentiate with multipotent capacity to generate the trophoblast components of the placenta. The isolation and use of mouse trophoblast stem cells (mTSCs) to model in vitro trophoblast differentiation, in combination with CRISPR/Cas9 genome editing technology, has provided tremendous insight into the molecular mechanisms governing early mouse placentation.

View Article and Find Full Text PDF