Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids.
View Article and Find Full Text PDFDoping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy.
View Article and Find Full Text PDFWe report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination).
View Article and Find Full Text PDFNanoripple structures spontaneously formed at room temperature during chemical and electrochemical deposition of metals, semiconductors, and alloys on gold and copper templates, patterned with nanocavities, have been studied by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Annealing the templates at approximately equal to 373 K also results in ripple formation. Both experimental results and modeling, including anisotropic surface diffusion, demonstrate that nanocavity size in the template determines the ripple wavelength and amplitude, prior to a final stage of coarsening.
View Article and Find Full Text PDFBacterial adhesion and spreading on biomaterials are considered key features of pathogenicity. Roughness and topography of the substrate have been reported to affect bacterial adhesion, but little is known about their effect on spreading. Submicron row and channel tuning with bacterial diameter (S2) were designed to test bacterial motility on these surfaces.
View Article and Find Full Text PDFPattern transfer with high resolution is a frontier topic in the emerging field of nanotechnologies. Electrochemical molding is a possible route for nanopatterning metal, alloys and oxide surfaces with high resolution in a simple and inexpensive way. This method involves electrodeposition onto a conducting master covered by a self-assembled alkanethiolate monolayer (SAMs).
View Article and Find Full Text PDF