Purpose: IL2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared with nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation.
Experimental Design: An ITK-specific monoclonal antibody was used to probe sections from deidentified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by IHC.
Non-healing wounds are a significant source of morbidity. This is particularly true for diabetic patients, who tend to develop chronic skin wounds. O-GlcNAc modification of serine and threonine residues is a common regulatory post-translational modification analogous to protein phosphorylation; increased intracellular protein O-GlcNAc modification has been observed in diabetic and hyperglycemic states.
View Article and Find Full Text PDFThe pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro.
View Article and Find Full Text PDFBullous pemphigoid (BP) is an autoimmune skin-blistering disease characterized by the presence of autoantibodies against the hemidesmosomal proteins BP230 and BP180. In the IgG passive transfer mouse model of BP, subepidermal blistering is triggered by anti-BP180 antibodies and depends on the complement system, mast cell (MC) degranulation, and neutrophil infiltration. In this study, we have identified the signaling events that connect the activation of the complement system and MC degranulation.
View Article and Find Full Text PDFPemphigus vulgaris (PV) is an autoimmune blistering disease in which antibodies against the desmosomal cadherin, DSG3 (desmoglein-3), cause acantholysis. It has become increasingly clear that loss of cell-cell adhesion in PV is a complex and active process involving multiple signaling events such as activation of p38MAPK. It has also been demonstrated that incubating keratinocytes with PV IgG causes a redistribution of DSG3 from the cell surface to endosomes, which target these proteins for degradation.
View Article and Find Full Text PDFIn pemphigus vulgaris and pemphigus foliaceus (PF), autoantibodies against desmoglein-3 and desmoglein-1 induce epidermal cell detachment (acantholysis) and blistering. Activation of keratinocyte intracellular signaling pathways is emerging as an important component of pemphigus IgG-mediated acantholysis. We previously reported activation of p38 mitogen-activated protein kinase (MAPK) in response to pathogenic pemphigus vulgaris and PF IgG.
View Article and Find Full Text PDFPemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2006
Pemphigus vulgaris (PV) is a life-threatening autoimmune blistering skin disease characterized by detachment of keratinocytes (acantholysis). It has been proposed that PV IgG might trigger signaling and that this process may lead to acantholysis. Indeed, we recently identified a rapid and dose-dependent phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and heat shock protein (HSP) 27 after binding of PV antibodies to cultured keratinocytes.
View Article and Find Full Text PDFO-Glycosylation modifies and regulates a variety of intracellular proteins. Plakoglobin, which functions in both cell-cell adhesion and signal transduction, is modified by O-glycosylation; however, the significance is unknown. To investigate the functional consequence of plakoglobin O-glycosylation, we cloned and overexpressed in keratinocytes murine O-GlcNAc transferase (mOGT).
View Article and Find Full Text PDFIn the human autoimmune blistering disease pemphigus vulgaris (PV) pathogenic antibodies bind the desmosomal cadherin desmoglein-3 (dsg3), causing epidermal cell-cell detachment (acantholysis). Pathogenic PV dsg3 autoantibodies were used to initiate desmosome signaling in human keratinocyte cell cultures. Heat shock protein 27 (HSP27) and p38MAPK were identified as proteins rapidly phosphorylated in response to PV IgG.
View Article and Find Full Text PDFBecause changes in cell-cell adhesion have profound effects on cellular behavior, we hypothesized a link between the adhesion and signaling functions of plakoglobin and beta-catenin. To investigate the existence of adherens-junction-mediated signaling, we used peroxovanadate to tyrosine phosphorylate plakoglobin and beta-catenin and to dissociate adherens junctions. The distribution of plakoglobin and beta-catenin was determined by immunofluorescence, western blot analysis, pulse-chase radiolabeling, and biochemical subcellular fractionation.
View Article and Find Full Text PDF