Acetylcholinesterase (AChE) plays a pivotal role in the cholinergic system, and its inhibition is sought after in a wide range of applications, from insect control to Alzheimer's disease treatment. While the primary physiological isoforms of AChE are membrane-bound proteins, most assays for discovering new, safer, and potent inhibitors are conducted using commercially available soluble isoforms, such as the electric eel AChE (eeAChE). In this study, we conducted a comparative analysis of the activity and selectivity to phenolic inhibitors of recombinant human AChE, eeAChE and a mutant variant of human AChE known as dAChE4.
View Article and Find Full Text PDFHuman P-glycoprotein (P-gp) utilizes energy from ATP hydrolysis for the efflux of chemically dissimilar amphipathic small molecules and plays an important role in the development of resistance to chemotherapeutic agents in most cancers. Efforts to overcome drug resistance have focused on inhibiting P-gp-mediated drug efflux. Understanding the features distinguishing P-gp inhibitors from substrates is critical.
View Article and Find Full Text PDFBackground: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d.
View Article and Find Full Text PDFVineyard-derived pomace is a byproduct of the wine industry that can have a negative impact on the environment if it is only disposed of or used as a fertilizer. Owing to its polyphenol content, grape pomace is an alternative to biocontrol undesirable microorganisms. In the present study, we characterized the phenolic composition of red and white grape pomace from Valles Calchaquíes, Argentina, and explored its activity against Leishmania (Leishmania) amazonensis, an etiological agent of American tegumentary leishmaniasis, a neglected endemic disease in northern Argentina.
View Article and Find Full Text PDFBackground: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ) and ABCG2 (encoded by ) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human gene: , , , and .
View Article and Find Full Text PDFIn the present work, we analyzed how external factors can modulate the efficiency of epigallocatechin‑3‑O‑gallate (EGCG) inhibition of a membrane-bound isoform of the acetylcholinesterase. Increasing the ionic strength but not the osmolarity of the bulk medium proved to be an important factor. In addition, we verified a clear correlation between the inhibitory activity with the order degree of the membranes by using cholesterol-partially depleted red blood cell ghosts.
View Article and Find Full Text PDFThe interaction of enterodiol and the well-described polyphenol epigallocatechin gallate (EGCG) with hepatic membranes has been matter of interest in the last few years. On one hand, EGCG is only able to bind to the phospholipid polar head groups, as it has been already described in synthetic lipid bilayers and erythrocyte membranes but cannot get inserted into the hydrophobic core or be transported into the lumen of membrane vesicles. On the other, enterodiol has no interaction with non-energized membranes either, but it is able to interact and even be transported upon addition of ATP.
View Article and Find Full Text PDFThe activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form.
View Article and Find Full Text PDF