Front Endocrinol (Lausanne)
May 2022
The periprostatic adipose tissue (PPAT) is a site of invasion of prostate cancer (PCa) and is part of the microenvironment. It was shown that PPAT secretes factors and fatty acids (FAs) that alter the microenvironment of the PCa. The PPAT secretome of patients with PCa-T3 stage (PPAT-T3) has a metabolic profile enriched in several pathways related to energy production, indicating a greater energy requirement by the tumor, when compared to that of patients in the PCa-T2 stage (PPAT-T2).
View Article and Find Full Text PDFBackground/aim: This study examined the potential role of natural triterpenoids lupeol, calenduladiol and heliantriol B2, and a set of 19 derivatives, as antiproliferative and antimetastatic agents against prostate cancer cells.
Materials And Methods: Natural triterpenoids were isolated from Chuqiraga erinaceae. Analogs were obtained by transformations of lupeol and calenduladiol.
Background/aim: Periprostatic adipose tissue (PPAT) directs tumour behaviour. Microenvironment secretome provides information related to its biology. This study was performed to identify secreted proteins by PPAT, from both prostate cancer and benign prostate hyperplasia (BPH) patients.
View Article and Find Full Text PDFTumor progression depends on the tumor-stroma interaction. In the breast, adipose tissue is the predominant stromal type. We have previously demonstrated that conditioned media (CMs) from explants of human adipose tissue of tumor breasts (hATT) increase proliferation and migration of breast cancer epithelial cells when compared to human adipose tissue from normal breasts (hATN).
View Article and Find Full Text PDFBackground: Adipose microenvironment is involved in signaling pathways that influence breast cancer. We aim to characterize factors that are modified: 1) in tumor and non tumor human breast epithelial cell lines when incubated with conditioned media (CMs) from human breast cancer adipose tissue explants (hATT) or normal breast adipose tissue explants (hATN); 2) in hATN-CMs vs hATT-CMs; 3) in the tumor associated adipocytes vs. non tumor associated adipocytes.
View Article and Find Full Text PDFIntroduction: Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines.
Materials And Methods: Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation.
Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells.
View Article and Find Full Text PDF