Traits that enable species to persist in ecological environments are often maintained over time, a phenomenon known as niche conservatism. Here we argue that ecological niches function at levels above species, notably at the level of genus for mammals, and that niche conservatism is also evident above the species level. Using the proxy of geographic range size, we explore changes in the realized niche of North American mammalian genera and families across the major climatic transition represented by the last glacial-interglacial transition.
View Article and Find Full Text PDFSynthetic science promises an unparalleled ability to find new meaning in old data, extant results, or previously unconnected methods and concepts, but pursuing synthesis can be a difficult and risky endeavor. Our experience as biologists, informaticians, and educators at the National Evolutionary Synthesis Center has affirmed that synthesis can yield major insights, but also revealed that technological hurdles, prevailing academic culture, and general confusion about the nature of synthesis can hamper its progress. By presenting our view of what synthesis is, why it will continue to drive progress in evolutionary biology, and how to remove barriers to its progress, we provide a map to a future in which all scientists can engage productively in synthetic research.
View Article and Find Full Text PDFUnderstanding how climatic change impacts biological diversity is critical to conservation. Yet despite demonstrated effects of climatic perturbation on geographic ranges and population persistence, surprisingly little is known of the genetic response of species. Even less is known over ecologically long time scales pertinent to understanding the interplay between microevolution and environmental change.
View Article and Find Full Text PDF