Azacitidine/venetoclax is an active regimen in patients with newly diagnosed acute myeloid leukemia (AML). However, primary or secondary resistance to azacitidine/venetoclax is an area of unmet need and overexpression of MCL1 is suggested to be a potential resistance mechanism. Pevonedistat inhibits MCL1 through activation of NOXA, and pevonedistat/azacitidine has previously shown activity in AML.
View Article and Find Full Text PDFBH3 mimetics, including the BCL2/BCLX/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLX inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors.
View Article and Find Full Text PDFBackground: Despite recent approval of several new agents, relapsed acute lymphoblastic leukemia (ALL) remains challenging to treat. Sapanisertib (MLN0128/TAK-228) is an oral TORC1/2 inhibitor that exhibited preclinical activity against ALL.
Methods: We conducted a single-arm multi-center Phase II study of sapanisertib monotherapy (3 mg orally daily of the milled formulation for 21 days every 28 days) in patients with ALL through the Experimental Therapeutics Clinical Trials Network (NCI-9775).
How to identify follicular lymphoma (FL) patients with low disease burden but high risk for early progression is unclear. Building on a prior study demonstrating the early transformation of FLs with high variant allele frequency (VAF) BCL2 mutations at activation-induced cytidine deaminase (AICDA) sites, we examined 11 AICDA mutational targets, including BCL2, BCL6, PAX5, PIM1, RHOH, SOCS, and MYC, in 199 newly diagnosed grade 1 and 2 FLs. BCL2 mutations with VAF ≥20% occurred in 52% of cases.
View Article and Find Full Text PDFThe poly(ADP-ribose) binding protein CHFR regulates cellular responses to mitotic stress. The deubiquitinase UBC13, which regulates CHFR levels, has been associated with better overall survival in paclitaxel-treated ovarian cancer. Despite the extensive use of taxanes in the treatment of ovarian cancer, little is known about expression of CHFR itself in this disease.
View Article and Find Full Text PDFInhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors.
View Article and Find Full Text PDFAcquired PARP inhibitor (PARPi) resistance in - or -mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment .
View Article and Find Full Text PDFThe BCL2 family of proteins regulates cellular life and death decisions. Among BCL2 family members, BH3-only proteins have critical roles by neutralizing antiapoptotic family members, as well as directly activating BAX and BAK. Despite widespread occurrence of BH3-only protein upregulation in response to various stresses, this process is rarely quantified.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in multiple malignancies. Rapamycin analogs, which partially inhibit mTOR complex 1 (mTORC1), exhibit immunosuppressive and limited antitumor activity, but sometimes activate survival pathways through feedback mechanisms involving mTORC2. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR active site.
View Article and Find Full Text PDFA number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors.
View Article and Find Full Text PDFMitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells.
View Article and Find Full Text PDFFollicular lymphoma (FL), an indolent neoplasm caused by a t(14;18) chromosomal translocation that juxtaposes the BCL2 gene and immunoglobulin locus, has a variable clinical course and frequently undergoes transformation to an aggressive lymphoma. Although BCL2 mutations have been previously described, their relationship to FL progression remains unclear. In this study, we evaluated the frequency and nature of BCL2 mutations in 2 independent cohorts of grade 1 and 2 FLs, along with the correlation between BCL2 mutations, transformation risk, and survival.
View Article and Find Full Text PDFRecombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL.
View Article and Find Full Text PDFSignaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation.
View Article and Find Full Text PDFBcl-2 is phosphorylated on Ser(70) after treatment of cells with spindle poisons. On the basis of effects observed in cells overexpressing Bcl-2 S70E or S70A mutants, various studies have concluded that Ser(70) phosphorylation either enhances or diminishes Bcl-2 function. In the present study, the ability of phosphorylated Bcl-2, as well as the S70E and S70A mutants, to bind and neutralize proapoptotic Bcl-2 family members under cell-free conditions and in intact cells was examined in an attempt to resolve this controversy.
View Article and Find Full Text PDFAlthough farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis.
View Article and Find Full Text PDFThe CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival.
View Article and Find Full Text PDFRecently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 (PARP1) plays critical roles in the regulation of DNA repair. Accordingly, small molecule inhibitors of PARP are being developed as agents that could modulate the activity of genotoxic chemotherapy, such as topoisomerase I poisons. In this study we evaluated the ability of the PARP inhibitor veliparib to enhance the cytotoxicity of the topoisomerase I poisons topotecan and camptothecin (CPT).
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies.
View Article and Find Full Text PDFBackground: In preclinical studies the heat shock protein 90 (Hsp90) inhibitor tanespimycin induced down-regulation of checkpoint kinase 1 (Chk1) and other client proteins as well as increased sensitivity of acute leukemia cells to cytarabine. We report here the results of a phase I and pharmacological study of the cytarabine + tanespimycin combination in adults with recurrent or refractory acute leukemia.
Design And Methods: Patients received cytarabine 400 mg/m(2)/day continuously for 5 days and tanespimycin infusions at escalating doses on days 3 and 6.
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction.
View Article and Find Full Text PDF