Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear.
View Article and Find Full Text PDFGiven its toxicity against culicid larvae, Lysinibacillus sphaericus is used for the biological control of mosquitoes such as Culex sp. and Anopheles sp. The toxicity factors currently reported for L.
View Article and Find Full Text PDFBackground: The control of Aedes aegypti is usually based on chemical insecticides, but the overuse of these compounds has led to increased resistance. The binary toxin produced by Lysinibacillus sphaericus in the final stages of sporulation is used for mosquito control due to its specificity against the culicid larvae; however, it has been proved that Ae. aegypti is refractory for this toxin.
View Article and Find Full Text PDF