Publications by authors named "Paula A M R Valdisser"

The expansion of bean genome technologies has prompted new perspectives on generating resources and knowledge essential to research and implementing biotechnological tools for the practical operations of plant breeding programs. This study aimed to resequence the entire genome (whole genome sequencing-WGS) of 40 bean genotypes selected based on their significance in breeding programs worldwide, with the objective of generating an extensive database for the identification of single nucleotide polymorphisms (SNPs). Over 6 million SNPs were identified, distributed across the 11 bean chromosomes.

View Article and Find Full Text PDF

Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches.

View Article and Find Full Text PDF
Article Synopsis
  • RNA-Seq was used to analyze genes involved in drought response in leaf and root tissues from both drought-susceptible and drought-tolerant genotypes, identifying 54,750 transcripts from 28,590 genes, including 1,648 novel high-fidelity entries.
  • A total of 1,239 differentially expressed genes were found, predominantly in drought-tolerant genotypes, focusing on oxidative stress, response to stimuli, and kinase activity, indicating a proactive response to stress.
  • The study validated 88.64% of these genes using qPCR, identified a large number of genetic variants, and contributed data to the NCBI database, enhancing understanding of drought tolerance mechanisms in beans.
View Article and Find Full Text PDF

In the Brazilian wet and dry seasons, common beans (Phaseolus vulgaris L.) are grown under rainfed conditions with unexpected episodes of drought and high temperatures. The objective of this study was to evaluate the physiological mechanisms associated with drought adaptation traits in landraces and line/cultivars of beans from the Andean and Mesoamerican gene pools.

View Article and Find Full Text PDF

The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies.

View Article and Find Full Text PDF

The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans.

View Article and Find Full Text PDF

Background: Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs.

View Article and Find Full Text PDF

Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes.

View Article and Find Full Text PDF