Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size.
View Article and Find Full Text PDFA compact electrostatic levitator was developed for the structural analysis of high-temperature liquids by x-ray diffraction methods. The size of the levitator was 200 mm in diameter and 200 mm in height and can be set up on a two axis diffractometer with a laboratory x-ray source, which is very convenient in performing structural measurements of high-temperature liquids. In particular, since the laboratory x-ray source allows a great amount of user time, preliminary or challenging experiments can be performed with trial and error, which prepares and complements synchrotron x-ray experiments.
View Article and Find Full Text PDFThe National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification studies, and atomic structure research. In addition to the contamination-free environment for undercooled and liquid metals and semiconductors, the newly developed facilities possess the unique capabilities of handling ceramics and high vapor pressure materials, reducing processing time, and imaging high luminosity samples. These are exemplified in this paper with the successful processing of BaTiO(3).
View Article and Find Full Text PDF