CCK and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important for elucidating the mechanisms by which energy balance is maintained. We found here that coadministration of subthreshold CCK and leptin, which individually have no effect on feeding, dramatically reduced food intake in rats.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP1) and leptin are anorectic hormones. Previously, we have shown that i.p.
View Article and Find Full Text PDFA high-fat diet (HFD) is a well-known contributing factor in the development of obesity. Most rats fed HFDs become obese. Those that avoid obesity when fed HFDs are considered diet resistant (DR).
View Article and Find Full Text PDFIn this article, we present a liver-kidney co-culture model in a micro fluidic biochip. The liver was modeled using HepG2/C3a and HepaRG cell lines and the kidney using MDCK cell lines. To demonstrate the synergic interaction between both organs, we investigated the effect of ifosfamide, an anticancerous drug.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP-1) and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important to elucidate a mechanism to maintain energy balance. In the present study, coadministration of subthreshold GLP-1 and leptin dramatically reduced feeding in rats.
View Article and Find Full Text PDFBackground and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs) α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1-) induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP-) 1/Matrix Metalloproteinase (MMP) balance in rat chondrocytes embedded in alginate beads. Experimental Approach.
View Article and Find Full Text PDFBackground: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells.
Principal Findings: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators.
View Article and Find Full Text PDF