Publications by authors named "Paul de Waal"

Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S.

View Article and Find Full Text PDF

The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various members.

View Article and Find Full Text PDF

Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems.

View Article and Find Full Text PDF

The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation.

View Article and Find Full Text PDF

Plasmids pNP40 and pUC11B encode two prevalent yet divergent conjugation systems, which have been characterized in detail recently. Here, we report the elucidation of the putative adhesins of the pNP40 and pUC11B conjugation systems, encoded by and , respectively. Despite their significant sequence divergence, TraAd and TrsAd represent the most conserved component between the pNP40- and the pUC11B-encoded conjugation systems and share similar peptidoglycan-hydrolase domains.

View Article and Find Full Text PDF

Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems.

View Article and Find Full Text PDF

Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11.

View Article and Find Full Text PDF

Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB-phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures.

View Article and Find Full Text PDF

Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in and has since been demonstrated in numerous species, including and . Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including spp.

View Article and Find Full Text PDF

-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages.

View Article and Find Full Text PDF

Plasmid pNP40, which was first identified nearly 40 years ago in subsp. biovar diacetylactis DRC3, encodes functions such as heavy metal-, bacteriophage-, and nisin-resistance, as well as plasmid transfer ability by conjugation. Here, we report an optimized conjugation protocol for this plasmid, yielding a transfer frequency that is approximately 4,000-fold higher than those previously reported in literature, while we also observed high-frequency plasmid co-mobilization.

View Article and Find Full Text PDF

Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S.

View Article and Find Full Text PDF

Background: Efficient bioethanol production from hemicellulose feedstocks by requires xylose utilization. Whereas does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase from (PirXI) is used but the in vivo activity is rather low and very high levels of the enzyme are needed for xylose metabolism.

View Article and Find Full Text PDF

Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific N367I mutation in the endogenous chimeric Hxt36 hexose transporter.

View Article and Find Full Text PDF

Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization.

View Article and Find Full Text PDF

The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application.

View Article and Find Full Text PDF

Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N-terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter.

View Article and Find Full Text PDF

Engineering for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of engineering, we have developed a quadruple hexokinase deletion mutant of that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations.

View Article and Find Full Text PDF

Background: Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein degradation. Therefore, in the absence of glucose or when the glucose is exhausted from the medium, some Hxt proteins with high xylose transport capacity are rapidly degraded and removed from the cytoplasmic membrane.

View Article and Find Full Text PDF

Background: The yeast Saccharomyces cerevisiae is unable to ferment pentose sugars like d-xylose. Through the introduction of the respective metabolic pathway, S. cerevisiae is able to ferment xylose but first utilizes d-glucose before the d-xylose can be transported and metabolized.

View Article and Find Full Text PDF

Growth factors modulate germ line stem cell self-renewal and differentiation behavior. We investigate the effects of Igf3, a fish-specific member of the igf family. Fsh increased in a steroid-independent manner the number and mitotic index of single type A undifferentiated spermatogonia and of clones of type A differentiating spermatogonia in adult zebrafish testis.

View Article and Find Full Text PDF

Background: Engineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose can be transported and metabolized.

View Article and Find Full Text PDF

Recently, evidence has been provided for multiple regulatory functions of progestins during the late mitotic and meiotic phases of spermatogenesis in teleost fish. For example, our previous studies suggested that 17α,20β-dihydroxy-4-pregnen-3-one (DHP), potentially via Sertoli cells that express the progesterone receptor (pgr) gene, can contribute to the regulation of zebrafish spermatogenesis. To further our understanding of the function of DHP at early spermatogenetic stages, we investigated in the present study the expression of genes reflecting Sertoli cell function and spermatogenic development in adult zebrafish testis after DHP treatment in tissue culture.

View Article and Find Full Text PDF

This study aimed to improve, using the zebrafish model, our understanding of the distinct roles of pituitary gonadotropins FSH and LH in regulating testis functions in teleost fish. We report, for the first time in a vertebrate species, that zebrafish Leydig cells as well as Sertoli cells express the mRNAs for both gonadotropin receptors (fshr and lhcgr). Although Leydig cell fshr expression has been reported in other piscine species and may be a common feature of teleost fish, Sertoli cell lhcgr expression has not been reported previously and might be related to the undifferentiated gonochoristic mode of gonadal sex differentiation in zebrafish.

View Article and Find Full Text PDF

Progestagenic sex steroid hormones play critical roles in reproduction across vertebrates, including teleost fish. To further our understanding of how progesterone modulates testis functions in fish, we set out to clone a progesterone receptor (pgr) cDNA exhibiting nuclear hormone receptor features from zebrafish testis. The open reading frame of pgr consists of 1854 bp, coding for a 617-amino acid-long protein showing the highest similarity with other piscine Pgr proteins.

View Article and Find Full Text PDF