Publications by authors named "Paul Wolujewicz"

Purpose: Spina bifida (SB) arises from complex genetic interactions that converge to interfere with neural tube closure. Understanding the precise patterns conferring SB risk requires a deep exploration of the genomic networks and molecular pathways that govern neurulation. This study aims to delineate genome-wide regulatory signatures underlying SB pathophysiology.

View Article and Find Full Text PDF
Article Synopsis
  • Schizophrenia (SCZ) is a complex neurodevelopmental disorder that typically shows symptoms in early adulthood, and research is now focusing on how vascular dysfunction contributes to the disease.
  • Using patient-derived induced pluripotent stem cells (iPSCs), researchers created 3D cerebral organoids to study SCZ neuropathology, discovering that SCZ organoids had a higher percentage of endothelial cells compared to healthy controls (CTRL).
  • The study found significant changes in gene expression related to blood vessel formation and permeability in SCZ endothelial cells, suggesting that the brain's microvascular cells might influence the development of SCZ by impacting the blood-brain barrier's function.
View Article and Find Full Text PDF

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability.

View Article and Find Full Text PDF

The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity.

View Article and Find Full Text PDF

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing has implicated some risk variants for human spina bifida (SB), but the genome-wide contribution of structural variation to this complex genetic disorder remains largely unknown. We examined copy-number variant (CNV) participation in the genetic architecture underlying SB risk.

Methods: A high-confidence ensemble approach to genome sequences (GS) was benchmarked and employed for systematic detection of common and rare CNVs in two separate ancestry-matched SB case-control cohorts.

View Article and Find Full Text PDF

A high quality benchmark for small variants encompassing 88 to 90% of the reference genome has been developed for seven Genome in a Bottle (GIAB) reference samples. However a reliable benchmark for large indels and structural variants (SVs) is more challenging. In this study, we manually curated 1235 SVs, which can ultimately be used to evaluate SV callers or train machine learning models.

View Article and Find Full Text PDF

Purpose Of Review: An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention.

View Article and Find Full Text PDF

Brain injuries, such as cerebral hypoxia-ischemia (H-I), induce a regenerative response from the neural stem/progenitors (NSPs) of the subventricular zone (SVZ); however, the mechanisms that regulate this expansion have not yet been fully elucidated. The Notch- Delta-Serrate-Lag2 (DSL) signaling pathway is considered essential for the maintenance of neural stem cells, but it is not known if it is necessary for the expansion of the NSPs subsequent to perinatal H-I injury. Therefore, the aim of this study was to investigate whether this pathway contributes to NSP expansion in the SVZ after H-I and, if so, to establish whether this pathway is directly induced by H-I or regulated by paracrine factors.

View Article and Find Full Text PDF

Unlabelled: A predictive framework for the evolution of stem cell biology in 3-D is currently lacking. In this study we propose deep image informatics of the nuclear biology of stem cells to elucidate how 3-D biomaterials steer stem cell lineage phenotypes. The approach is based on high content imaging informatics to capture minute variations in the 3-D spatial organization of splicing factor SC-35 in the nucleoplasm as a marker to classify emergent cell phenotypes of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF