Publications by authors named "Paul Whitley"

Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(styrene-co-maleic acid).

View Article and Find Full Text PDF

Background: Small angle scattering techniques are beginning to be more widely utilised for structural analysis of biological systems. However, applying these techniques to study membrane proteins still remains problematic, due to sample preparation requirements and analysis of the resulting data. The development of styrene-maleic acid co-polymers (SMA) to extract membrane proteins into nanodiscs for further study provides a suitable environment for structural analysis.

View Article and Find Full Text PDF

In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation.

View Article and Find Full Text PDF

Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS, and are therefore an attractive medium for membrane protein characterization.

View Article and Find Full Text PDF

Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood.

View Article and Find Full Text PDF

A major role for FcRn is the salvage of pinocytosed IgG and albumin from a degradative fate in lysosomes. FcRn achieves this by binding IgG in a pH-dependent manner in acidic endosomes and recycling it to the plasma membrane to be released at neutral pH. This is important in maintaining high serum IgG and albumin levels and has the potential to be exploited to modulate the pharmacokinetics of antibody-based therapeutics.

View Article and Find Full Text PDF

α-Synuclein (α-syn) is a cytosolic protein known for its association with neurodegenerative diseases, including Parkinson's disease and other synucleinopathies. The potential cellular function of α-synuclein may be of consequence for understanding the pathogenesis of such diseases. Previous work has suggested that α-synuclein can catalyze the reduction of iron as a ferrireductase.

View Article and Find Full Text PDF

RASSF7 protein localises to the centrosome and plays a key role in mitosis. Its expression is also increased in a range of tumour types. However, little is known about the molecular basis of RASSF7's function and it is not clear if it acts as an oncogene in the cancers where its levels are elevated.

View Article and Find Full Text PDF

Most integral membrane proteins located within the endomembrane system of eukaryotic cells are first assembled co-translationally into the endoplasmic reticulum (ER) before being sorted and trafficked to other organelles. The assembly of membrane proteins is mediated by the ER translocon, which allows passage of lumenal domains through and lateral integration of transmembrane (TM) domains into the ER membrane. It may be convenient to imagine multi-TM domain containing membrane proteins being assembled by inserting their first TM domain in the correct orientation, with subsequent TM domains inserting with alternating orientations.

View Article and Find Full Text PDF

Background: Research antibodies are used by thousands of scientists working in diverse disciplines, but it is common to hear concerns about antibody quality. This means that researchers need to carefully choose the antibodies they use to avoid wasting time and money. A well accepted way of selecting a research antibody is to identify one which has been used previously, where the associated data has been peer-reviewed and the results published.

View Article and Find Full Text PDF

In insulin target tissues, GLUT4 is known to traffic through multiple compartments that may involve ubiquitin- and/or SUMO-dependent targeting. During these trafficking steps, GLUT4 is sorted into a storage reservoir compartment that is acutely released by insulin signalling processes that are downstream of PI 3-kinase associated changes in inositol phospholipids. As ESCRT components have recently been found to influence cellular sorting processes that are related to changes in both ubiquitination and inositol phospholipids, we have examined whether GLUT4 traffic is routed through ESCRT dependent sorting steps.

View Article and Find Full Text PDF

Tight junctions consist of many proteins, including transmembrane and associated cytoplasmic proteins, which act to provide a barrier regulating transport across epithelial and endothelial tissues. These junctions are dynamic structures that are able to maintain barrier function during tissue remodelling and rapidly alter it in response to extracellular signals. Individual components of tight junctions also show dynamic behaviour, including migration within the junction and exchange in and out of the junctions.

View Article and Find Full Text PDF

Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease.

View Article and Find Full Text PDF

The MDCK cell line provides a tractable model for studying protein trafficking, polarity and junctions (tight, adherens, desmosome and gap) in epithelial cells. However, there are many different strains of MDCK cells available, including the parental line, MDCK I, MDCK II, MDCK.1, MDCK.

View Article and Find Full Text PDF

Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells.

View Article and Find Full Text PDF

Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P(2) is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568.

View Article and Find Full Text PDF

In eukaryotic cells, the completion of cytokinesis is dependent on membrane trafficking events to deliver membrane to the site of abscission. Golgi and recycling endosomal-derived proteins are required for the terminal stages of cytokinesis. Recently, protein subunits of the ESCRT (endosomal sorting complexes required for transport) that are normally involved in late endosome to lysosome trafficking have also been implicated in abscission.

View Article and Find Full Text PDF

Invasion and survival in mammalian cells by Salmonella enterica is mediated by bacterial proteins that are delivered to the host cell cytoplasm by type III secretion systems. One of these proteins, SopB/SigD, is a phosphoinositide phosphatase that can hydrolyse a number of substrates in vitro including PtdIns(3,5)P2. These substrates are, however, likely to be restricted in vivo by the localization of SopB, as different phosphoinositides have distinct spatial distributions in mammalian cells.

View Article and Find Full Text PDF

Phosphatidylinositol 3,5-bisphosphate is a membrane lipid found in all eukaryotes so far studied but downstream effector proteins of this lipid have yet to be identified. Here we report the use of cDNA phage libraries in conjunction with synthetic biotinylated derivatives of phosphatidylinositol 3,5-bisphosphate in the identification of a mammalian phosphatidylinositol 3,5-bisphosphate-binding protein, mVps24p. This protein is orthologous to the Saccharomyces cerevisiae protein, Vps24p, a class-E vacuolar protein-sorting protein.

View Article and Find Full Text PDF

We describe here the cloning, expression and characterisation of centaurin-alpha2 from a rat adipocyte cDNA library. The centaurin-alpha2 cDNA contains an open reading frame, which codes for a protein of 376 amino acids with predicted mass of 43.5 kDa.

View Article and Find Full Text PDF

Type I allergic reactions occur by immediate release of anaphylactogenic mediators due to cross-linking of IgE bound to the high-affinity Fc(epsilon)RI on the surface of effector cells of sensitized individuals after allergen exposure. IgE-mediated hypersensitivity against normally innocuous environmental antigens is of clinical importance because of an increasing incidence of asthma and severe atopic diseases causing raising health care burdens to the society. A vast variety of different molecular structures has been shown to be able to induce hypersensitivity reactions.

View Article and Find Full Text PDF