Publications by authors named "Paul Wentworth"

A panel of 1-deoxynojirimycin (DNJ) N-linked peptides were synthesized. Their IC50 values were measured in vitro against α-glucosidases I and II and were found to be in the micromolar range for both isozymes, and better than that of the iminosugar NB-DNJ (miglustat, 3) against α-glucosidase II. Cell-based studies revealed that although the free iminosugar 3 is most effective at disrupting N-linked glycan processing for short-term incubations (one day), when the cell-based studies were extended to three days, the DNJ N-linked tetrapeptide KDEL, which is an endoplasmic reticulum (ER)-retaining sequence, performed far better than 3.

View Article and Find Full Text PDF

A major challenge in nanomaterial science is to develop approaches that ensure that when administered in vivo, nanoparticles can be targeted to their requisite site of action. Herein we report the first approach that allows for cell-specific uptake of nanomaterials by a process involving reprogramming of the behavior of the ubiquitous protein corona of nanomaterials. Specifically, judicious surface modification of quantum dots with a small molecule that induces a protein-misfolding event in a component of the nanoparticle-associated protein corona renders the associated nanomaterials susceptible to cell-specific, receptor-mediated endocytosis.

View Article and Find Full Text PDF

Epidemiologic and clinical evidence points to an increased risk for cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and -B (ALD), but not the polyunsaturated fatty acid (PUFA)-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo red dyes but cannot bind to a consensus DNA sequence.

View Article and Find Full Text PDF

Abstract The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus.

View Article and Find Full Text PDF

The J-binding protein 1 (JBP1) is essential for biosynthesis and maintenance of DNA base-J (β-d-glucosyl-hydroxymethyluracil). Base-J and JBP1 are confined to some pathogenic protozoa and are absent from higher eukaryotes, prokaryotes and viruses. We show that JBP1 recognizes J-containing DNA (J-DNA) through a 160-residue domain, DB-JBP1, with 10 000-fold preference over normal DNA.

View Article and Find Full Text PDF

Myelin degradation in the central nervous system (CNS) is a clinical hallmark of multiple sclerosis (MS). A reduction in the net positive charge of myelin basic protein (MBP) via deimination of arginine to citrulline has been shown to correlate strongly with disease severity and has been linked to myelin instability and a defect that precedes neurodegeneration and leads to autoimmune attack. Recently, we have shown that lipid-derived aldehydes, such as cholesterol 5,6-secosterols atheronal A (1a) and atheronal B (1b), modulate the misfolding of certain proteins such as apolipoprotein B(100), β-amyloid, α-synuclein, and κ- and λ-antibody light chains in a process involving adduction of the hydrophobic aldehyde to lysine side chains, resulting in a decrease in the net positive charge of the protein.

View Article and Find Full Text PDF

As part of ongoing research in our group, we are keen to monitor the protein binding and movement of sterols and oxysterols in biological systems in real time. However, prior to performing these in vivo studies, we have herein studied how sterol and oxysterol surface modification of quantum dots affects their associated protein coronas. Thus, we have synthesized and analyzed cholesterol and atheronal-B surface-modified quantum dots (termed QD-chol and QD-ath-B, respectively).

View Article and Find Full Text PDF

[Image: see text] Cholesterol sterol aldehydes inhibit the misfolding of a prion protein fragment that induces GSS in mice. Atheronal-B completely inhibits the α to β-form transformation of MoPrP(89-143, P101L) a mechanism that involves adduction to the protein. This result offers a paradigm shift in lipid aldehyde induced protein misfolding and offers a new molecular scaffold on which to develop new potential prion disease therapeutics

View Article and Find Full Text PDF

Infection with the hepatitis C virus (HCV) has a huge impact on global health putting more than 170 million people at risk of developing severe liver disease. The HCV encoded p7 ion channel is essential for the production of infectious viruses. Despite a growing body of functional data, little is known about the 3-dimensional (3D) structure of the channel.

View Article and Find Full Text PDF

Ongoing efforts to unravel the origins of the cholesterol 5,6-secosterols (1a and 1b) in biological systems have revealed that the two known chemical routes to these oxysterols, ozonolysis of cholesterol (3) and Hock-cleavage of 5-alpha-hydroperoxycholesterol (4a), are distinguishable based upon the ratio of the hydrazone derivatives (2a and 2b) formed in each case and this ratio offers an insight into the chemical origin of the secosterols in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that the serum proteins C3, C4, and alpha(2)M have a thioester domain protected in a hydrophobic pocket, preventing it from breaking down easily.
  • The study used a method that selectively labels thioester groups in these proteins while keeping their original structure intact.
  • Findings suggest that the thioester site in these proteins is more accessible for interaction than previously thought.
View Article and Find Full Text PDF

Attacking Alzheimer's by ACAT: The aggregation of beta-amyloid peptides, especially Abeta(42), into senile plaques is a hallmark of Alzheimer's disease (AD). We show that the fungal natural products beauveriolides I and III can potently decrease Abeta secretion from cells expressing human amyloid precursor protein; this offers a potential new scaffold for the development of compounds with proven bioavailability for the treatment of AD.

View Article and Find Full Text PDF

Antibody light chain (LC) aggregation in vivo leads to the systemic deposition of Ig light chain domains in the form of either amyloid fibrils (AL-amyloidosis) or amorphous deposits, light-chain deposition disease (LCDD), in mainly cardiac or renal tissue and is a pathological condition that is often fatal. Molecular factors that may contribute to the propensity of LCs to aggregate in vivo, such as the protein primary structure or local environment, are intensive areas of study. Herein, we show that the aggregation of a human antibody kappa-(kappa-MJM) and lambda-(lambda-L155) light chain (1 mg/mL) can be accelerated in vitro when they are incubated under physiologically relevant conditions, PBS, pH 7.

View Article and Find Full Text PDF

The HIV envelope has evolved a dense array of immunologically "self" carbohydrates that efficiently protect the virus from antibody recognition. Nonetheless, one broadly neutralising antibody, IgG1 2G12, has been shown to recognise a cluster of oligomannose glycans on the HIV-1 surface antigen gp120. Thus the self carbohydrates of HIV are now regarded as potential targets for viral neutralisation and vaccine design.

View Article and Find Full Text PDF

Methamphetamine [(+)-2] abuse has emerged as a fast-rising global epidemic, with immunopharmacotherapeutic approaches being sought for its treatment. Herein, we report the generation and characterization of a monoclonal antibody, YX1-40H10, that catalyzes the photooxidation of (+)-2 into the nonpsychoactive compound benzaldehyde (14) under anaerobic conditions in the presence of riboflavin (6). Studies have revealed that the antibody facilitates the conversion of (+)-2 into 14 by binding the triplet photoexcited state of 6 in proximity to (+)-2.

View Article and Find Full Text PDF

Oxidative stress and inflammation are risk factors for both the development of alpha-synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, and Alzheimer's disease, the two most common neurodegenerative disorders. These diseases are associated with the neurotoxic deposition of misassembled alpha-synuclein and amyloid-beta (Abeta) peptides, respectively. Both occur sporadically, that is, without detectable disease-related mutations, in the vast majority of cases.

View Article and Find Full Text PDF

The proatherogenic properties of the cholesterol 5,6-secosterols (atheronal-A and atheronal-B), recently discovered in atherosclerotic arteries, have been investigated in terms of their effects on monocyte/macrophage function. A fluorescent analogue of atheronal-B (1) (50 microM), when cultured in either aqueous buffer (PBS) or in media containing fetal calf serum (10%), is rapidly taken-up into cultured macrophage (J774.1 or RAW 264.

View Article and Find Full Text PDF

Oxidative stress, inflammation and alpha-synuclein overexpression confer risk for development of alpha-synucleinopathies-neurodegenerative diseases that include Parkinson disease and Lewy body dementia. Dopaminergic neurons undergo degeneration in these diseases and are particularly susceptible to oxidative stress because dopamine metabolism itself creates reactive oxygen species. Intraneuronal deposition of alpha-synuclein as amyloid fibrils or Lewy bodies is the hallmark of these diseases.

View Article and Find Full Text PDF

Antibodies are generally thought to be a class of proteins that function without the use of cofactors. However, it is not widely appreciated that antibodies are believed to be the major carrier protein in human circulation for the important riboflavin cofactor that is involved in a host of biological phenomena. A further link between riboflavin and antibodies was discovered 30 years ago when a bright-yellow antibody, IgG(GAR), was purified from a patient with multiple myeloma who had turned yellow during the course of her disease.

View Article and Find Full Text PDF

We have recently discovered a reaction that all antibodies, regardless of source or antigenic specificity can catalyze, that is the reaction between singlet dioxygen ((1)O(2)(*)) and H(2)O to generate H(2)O(2). We have named this process the antibody-catalyzed water oxidation pathway (ACWOP). As part of our ongoing investigations into the possible biological role of this pathway, we have studied whether isoalloxazine-containing cofactors, that are known to be endogenous photosensitizers via Type-II pathways to generate (1)O(2)(*), such as riboflavin (RF, Vitamin B2) can trigger the ACWOP.

View Article and Find Full Text PDF

[Chemical reaction: See text] 29G12 is a murine monoclonal antibody programmed to catalyze the regio- and enantioselective 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide 1a and N,N-dimethylacrylamide 2a (Toker, J. D.; Wentworth, P.

View Article and Find Full Text PDF