Publications by authors named "Paul W Tetteh"

High-acuity αβT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αβTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αβTCRs and pre-TCRs within the αβT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.

View Article and Find Full Text PDF

Self-discrimination, a critical but ill-defined molecular process programmed during thymocyte development, requires myriad pre-T cell receptors (preTCRs) and αβTCRs. Using x-ray crystallography, we show how a preTCR applies the concave β-sheet surface of its single variable domain (Vβ) to "horizontally" grab the protruding MHC α2-helix. By contrast, αβTCRs purpose all six complementarity-determining region (CDR) loops of their paired VαVβ module to recognize peptides bound to major histocompatibility complex molecules (pMHCs) in "vertical" head-to-head binding.

View Article and Find Full Text PDF

Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells.

View Article and Find Full Text PDF

The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level.

View Article and Find Full Text PDF

Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing.

View Article and Find Full Text PDF

Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur unidirectionally, with the arrows 'pointing away' from the stem cell. Recent studies, all based on genetic lineage tracing, describe various strategies employed by epithelial stem cell hierarchies to replace damaged or lost cells.

View Article and Find Full Text PDF

Background: The cause of pre-eclampsia remains largely unknown, but oxidative stress (an imbalance favoring oxidant over antioxidant forces) has been implicated in contributing to the clinical symptoms of hypertension and proteinuria. Assessment of oxidative stress in pre-eclampsia using urinary isoprostane has produced conflicting results, and it is likely that renal function may affect isoprostane excretion. The aim of this study was to determine the role of oxidative stress in the pathophysiology of pre-eclampsia and to assess the effect of renal function on isoprostane excretion in pre-eclampsia in the Ghanaian population.

View Article and Find Full Text PDF

MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients.

View Article and Find Full Text PDF